forked from XTLS/REALITY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtls.go
722 lines (664 loc) · 21.7 KB
/
tls.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE-Go file.
// Server side implementation of REALITY protocol, a fork of package tls in Go 1.20.
// For client side, please follow https://github.com/XTLS/Xray-core/blob/main/transport/internet/reality/reality.go.
package reality
// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
import (
"bytes"
"context"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/binary"
"encoding/pem"
"errors"
"fmt"
"io"
"net"
"os"
"runtime"
"strings"
"sync"
"time"
"github.com/pires/go-proxyproto"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/hkdf"
)
type CloseWriteConn interface {
net.Conn
CloseWrite() error
}
type MirrorConn struct {
*sync.Mutex
net.Conn
Target net.Conn
}
func (c *MirrorConn) Read(b []byte) (int, error) {
c.Unlock()
runtime.Gosched()
n, err := c.Conn.Read(b)
c.Lock() // calling c.Lock() before c.Target.Write(), to make sure that this goroutine has the priority to make the next move
if n != 0 {
c.Target.Write(b[:n])
}
if err != nil {
c.Target.Close()
}
return n, err
}
func (c *MirrorConn) Write(b []byte) (int, error) {
return 0, fmt.Errorf("Write(%v)", len(b))
}
func (c *MirrorConn) Close() error {
return fmt.Errorf("Close()")
}
func (c *MirrorConn) SetDeadline(t time.Time) error {
return nil
}
func (c *MirrorConn) SetReadDeadline(t time.Time) error {
return nil
}
func (c *MirrorConn) SetWriteDeadline(t time.Time) error {
return nil
}
var (
size = 8192
empty = make([]byte, size)
types = [7]string{
"Server Hello",
"Change Cipher Spec",
"Encrypted Extensions",
"Certificate",
"Certificate Verify",
"Finished",
"New Session Ticket",
}
)
func Value(vals ...byte) (value int) {
for i, val := range vals {
value |= int(val) << ((len(vals) - i - 1) * 8)
}
return
}
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(ctx context.Context, conn net.Conn, config *Config) (*Conn, error) {
remoteAddr := conn.RemoteAddr().String()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\n", remoteAddr)
}
target, err := config.DialContext(ctx, config.Type, config.Dest)
if err != nil {
conn.Close()
return nil, errors.New("REALITY: failed to dial dest: " + err.Error())
}
if config.Xver == 1 || config.Xver == 2 {
if _, err = proxyproto.HeaderProxyFromAddrs(config.Xver, conn.RemoteAddr(), conn.LocalAddr()).WriteTo(target); err != nil {
target.Close()
conn.Close()
return nil, errors.New("REALITY: failed to send PROXY protocol: " + err.Error())
}
}
raw := conn
if pc, ok := conn.(*proxyproto.Conn); ok {
raw = pc.Raw() // for TCP splicing in io.Copy()
}
underlying := raw.(CloseWriteConn) // *net.TCPConn or *net.UnixConn
mutex := new(sync.Mutex)
hs := serverHandshakeStateTLS13{
c: &Conn{
conn: &MirrorConn{
Mutex: mutex,
Conn: conn,
Target: target,
},
config: config,
},
ctx: context.Background(),
}
copying := false
waitGroup := new(sync.WaitGroup)
waitGroup.Add(2)
go func() {
for {
mutex.Lock()
hs.clientHello, err = hs.c.readClientHello(context.Background()) // TODO: Change some rules in this function.
if copying || err != nil || hs.c.vers != VersionTLS13 || !config.ServerNames[hs.clientHello.serverName] {
break
}
for i, keyShare := range hs.clientHello.keyShares {
if keyShare.group != X25519 || len(keyShare.data) != 32 {
continue
}
if hs.c.AuthKey, err = curve25519.X25519(config.PrivateKey, keyShare.data); err != nil {
break
}
if _, err = hkdf.New(sha256.New, hs.c.AuthKey, hs.clientHello.random[:20], []byte("REALITY")).Read(hs.c.AuthKey); err != nil {
break
}
var aead cipher.AEAD
if aesgcmPreferred(hs.clientHello.cipherSuites) {
block, _ := aes.NewCipher(hs.c.AuthKey)
aead, _ = cipher.NewGCM(block)
} else {
aead, _ = chacha20poly1305.New(hs.c.AuthKey)
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.AuthKey[:16]: %v\tAEAD: %T\n", remoteAddr, hs.c.AuthKey[:16], aead)
}
ciphertext := make([]byte, 32)
plainText := make([]byte, 32)
copy(ciphertext, hs.clientHello.sessionId)
copy(hs.clientHello.sessionId, plainText) // hs.clientHello.sessionId points to hs.clientHello.raw[39:]
if _, err = aead.Open(plainText[:0], hs.clientHello.random[20:], ciphertext, hs.clientHello.original); err != nil {
break
}
copy(hs.clientHello.sessionId, ciphertext)
copy(hs.c.ClientVer[:], plainText)
hs.c.ClientTime = time.Unix(int64(binary.BigEndian.Uint32(plainText[4:])), 0)
copy(hs.c.ClientShortId[:], plainText[8:])
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientVer: %v\n", remoteAddr, hs.c.ClientVer)
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientTime: %v\n", remoteAddr, hs.c.ClientTime)
fmt.Printf("REALITY remoteAddr: %v\ths.c.ClientShortId: %v\n", remoteAddr, hs.c.ClientShortId)
}
if (config.MinClientVer == nil || Value(hs.c.ClientVer[:]...) >= Value(config.MinClientVer...)) &&
(config.MaxClientVer == nil || Value(hs.c.ClientVer[:]...) <= Value(config.MaxClientVer...)) &&
(config.MaxTimeDiff == 0 || time.Since(hs.c.ClientTime).Abs() <= config.MaxTimeDiff) &&
(config.ShortIds[hs.c.ClientShortId]) {
hs.c.conn = conn
}
hs.clientHello.keyShares[0].group = CurveID(i)
break
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.conn == conn: %v\n", remoteAddr, hs.c.conn == conn)
}
break
}
mutex.Unlock()
if hs.c.conn != conn {
if config.Show && hs.clientHello != nil {
fmt.Printf("REALITY remoteAddr: %v\tforwarded SNI: %v\n", remoteAddr, hs.clientHello.serverName)
}
io.Copy(target, underlying)
}
waitGroup.Done()
}()
go func() {
s2cSaved := make([]byte, 0, size)
buf := make([]byte, size)
handshakeLen := 0
f:
for {
runtime.Gosched()
n, err := target.Read(buf)
if n == 0 {
if err != nil {
conn.Close()
waitGroup.Done()
return
}
continue
}
mutex.Lock()
s2cSaved = append(s2cSaved, buf[:n]...)
if hs.c.conn != conn {
copying = true // if the target already sent some data, just start bidirectional direct forwarding
break
}
if len(s2cSaved) > size {
break
}
for i, t := range types {
if hs.c.out.handshakeLen[i] != 0 {
continue
}
if i == 6 && len(s2cSaved) == 0 {
break
}
if handshakeLen == 0 && len(s2cSaved) > recordHeaderLen {
if Value(s2cSaved[1:3]...) != VersionTLS12 ||
(i == 0 && (recordType(s2cSaved[0]) != recordTypeHandshake || s2cSaved[5] != typeServerHello)) ||
(i == 1 && (recordType(s2cSaved[0]) != recordTypeChangeCipherSpec || s2cSaved[5] != 1)) ||
(i > 1 && recordType(s2cSaved[0]) != recordTypeApplicationData) {
break f
}
handshakeLen = recordHeaderLen + Value(s2cSaved[3:5]...)
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\tlen(s2cSaved): %v\t%v: %v\n", remoteAddr, len(s2cSaved), t, handshakeLen)
}
if handshakeLen > size { // too long
break f
}
if i == 1 && handshakeLen > 0 && handshakeLen != 6 {
break f
}
if i == 2 && handshakeLen > 512 {
hs.c.out.handshakeLen[i] = handshakeLen
hs.c.out.handshakeBuf = buf[:0]
break
}
if i == 6 && handshakeLen > 0 {
hs.c.out.handshakeLen[i] = handshakeLen
break
}
if handshakeLen == 0 || len(s2cSaved) < handshakeLen {
mutex.Unlock()
continue f
}
if i == 0 {
hs.hello = new(serverHelloMsg)
if !hs.hello.unmarshal(s2cSaved[recordHeaderLen:handshakeLen]) ||
hs.hello.vers != VersionTLS12 || hs.hello.supportedVersion != VersionTLS13 ||
cipherSuiteTLS13ByID(hs.hello.cipherSuite) == nil ||
hs.hello.serverShare.group != X25519 || len(hs.hello.serverShare.data) != 32 {
break f
}
}
hs.c.out.handshakeLen[i] = handshakeLen
s2cSaved = s2cSaved[handshakeLen:]
handshakeLen = 0
}
start := time.Now()
err = hs.handshake()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.handshake() err: %v\n", remoteAddr, err)
}
if err != nil {
break
}
go func() { // TODO: Probe target's maxUselessRecords and some time-outs in advance.
if handshakeLen-len(s2cSaved) > 0 {
io.ReadFull(target, buf[:handshakeLen-len(s2cSaved)])
}
if n, err := target.Read(buf); !hs.c.isHandshakeComplete.Load() {
if err != nil {
conn.Close()
}
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ttime.Since(start): %v\tn: %v\terr: %v\n", remoteAddr, time.Since(start), n, err)
}
}
}()
err = hs.readClientFinished()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.readClientFinished() err: %v\n", remoteAddr, err)
}
if err != nil {
break
}
hs.c.isHandshakeComplete.Store(true)
break
}
mutex.Unlock()
if hs.c.out.handshakeLen[0] == 0 { // if the target sent an incorrect Server Hello, or before that
if hs.c.conn == conn { // if we processed the Client Hello successfully but the target did not
waitGroup.Add(1)
go func() {
io.Copy(target, underlying)
waitGroup.Done()
}()
}
conn.Write(s2cSaved)
io.Copy(underlying, target)
// Here is bidirectional direct forwarding:
// client ---underlying--- server ---target--- dest
// Call `underlying.CloseWrite()` once `io.Copy()` returned
underlying.CloseWrite()
}
waitGroup.Done()
}()
waitGroup.Wait()
target.Close()
if config.Show {
fmt.Printf("REALITY remoteAddr: %v\ths.c.handshakeStatus: %v\n", remoteAddr, hs.c.isHandshakeComplete.Load())
}
if hs.c.isHandshakeComplete.Load() {
return hs.c, nil
}
conn.Close()
return nil, errors.New("REALITY: processed invalid connection") // TODO: Add details.
/*
c := &Conn{
conn: conn,
config: config,
}
c.handshakeFn = c.serverHandshake
return c
*/
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
c := &Conn{
conn: conn,
config: config,
isClient: true,
}
c.handshakeFn = c.clientHandshake
return c
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
conns chan net.Conn
err error
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
/*
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return Server(c, l.config), nil
*/
if c, ok := <-l.conns; ok {
return c, nil
}
return nil, l.err
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with [Server].
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
{
l.conns = make(chan net.Conn)
go func() {
for {
c, err := l.Listener.Accept()
if err != nil {
l.err = err
close(l.conns)
return
}
go func() {
defer recover()
c, err = Server(context.Background(), c, l.config)
if err == nil {
l.conns <- c
}
}()
}
}()
}
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
// If this condition changes, consider updating http.Server.ServeTLS too.
if config == nil || len(config.Certificates) == 0 &&
config.GetCertificate == nil && config.GetConfigForClient == nil {
return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of [Config] for the defaults.
//
// DialWithDialer uses context.Background internally; to specify the context,
// use [Dialer.DialContext] with NetDialer set to the desired dialer.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
return dial(context.Background(), dialer, network, addr, config)
}
func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
if netDialer.Timeout != 0 {
var cancel context.CancelFunc
ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
defer cancel()
}
if !netDialer.Deadline.IsZero() {
var cancel context.CancelFunc
ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
defer cancel()
}
rawConn, err := netDialer.DialContext(ctx, network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := config.Clone()
c.ServerName = hostname
config = c
}
conn := Client(rawConn, config)
if err := conn.HandshakeContext(ctx); err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config)
}
// Dialer dials TLS connections given a configuration and a Dialer for the
// underlying connection.
type Dialer struct {
// NetDialer is the optional dialer to use for the TLS connections'
// underlying TCP connections.
// A nil NetDialer is equivalent to the net.Dialer zero value.
NetDialer *net.Dialer
// Config is the TLS configuration to use for new connections.
// A nil configuration is equivalent to the zero
// configuration; see the documentation of Config for the
// defaults.
Config *Config
}
// Dial connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The returned [Conn], if any, will always be of type *[Conn].
//
// Dial uses context.Background internally; to specify the context,
// use [Dialer.DialContext].
func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
return d.DialContext(context.Background(), network, addr)
}
func (d *Dialer) netDialer() *net.Dialer {
if d.NetDialer != nil {
return d.NetDialer
}
return new(net.Dialer)
}
// DialContext connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// The returned [Conn], if any, will always be of type *[Conn].
func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
if err != nil {
// Don't return c (a typed nil) in an interface.
return nil, err
}
return c, nil
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair of
// files. The files must contain PEM encoded data. The certificate file may
// contain intermediate certificates following the leaf certificate to form a
// certificate chain. On successful return, Certificate.Leaf will be populated.
//
// Before Go 1.23 Certificate.Leaf was left nil, and the parsed certificate was
// discarded. This behavior can be re-enabled by setting "x509keypairleaf=0"
// in the GODEBUG environment variable.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := os.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := os.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be populated.
//
// Before Go 1.23 Certificate.Leaf was left nil, and the parsed certificate was
// discarded. This behavior can be re-enabled by setting "x509keypairleaf=0"
// in the GODEBUG environment variable.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
fail := func(err error) (Certificate, error) { return Certificate{}, err }
var cert Certificate
var skippedBlockTypes []string
for {
var certDERBlock *pem.Block
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
} else {
skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
}
}
if len(cert.Certificate) == 0 {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in certificate input"))
}
if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
}
return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
skippedBlockTypes = skippedBlockTypes[:0]
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in key input"))
}
if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
}
return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
cert.Leaf = x509Cert
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case ed25519.PublicKey:
priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
return fail(errors.New("tls: private key does not match public key"))
}
default:
return fail(errors.New("tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
return key, nil
default:
return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("tls: failed to parse private key")
}