-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess.py
490 lines (391 loc) · 18.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import os
import pickle
import string
from collections import defaultdict
from itertools import repeat
from multiprocessing import cpu_count, Pool
import nltk
import numpy as np
import pandas as pd
from nltk.corpus import stopwords
def tokenize_comments(file_dir, file_name, chunk_size=20000,
new_dir=None, new_name='tokenized.csv', lower_case=True,
keep_stopwords=False, keep_punc=True):
"""Tokenize the comment texts and remove the punctuations in the csv file.
In case of a large file, process the file in chunks and append
the chunks to new file.
Args:
new_name: string, name for new file.
file_dir: string, directory of the file.
file_name: string, file name of the original csv file.
chunk_size: int, size of each chunk.
new_dir: dict, directory to save the new file to.
lower_case: boolean, set True to convert all words to lower case.
keep_stopwords: boolean, set True to keep stopwords in document.
keep_punc: boolean, set True to keep punctuation.
Returns:
New file location
"""
df_chunk = pd.read_csv(os.path.join(file_dir, file_name), chunksize=chunk_size)
new_dir = os.path.join(file_dir, new_dir) if new_dir else file_dir
punctuations = list(string.punctuation)
quotes = ['``', "''"]
punctuations += quotes
if not os.path.exists(new_dir):
os.makedirs(new_dir)
for index, chunk in enumerate(df_chunk):
print('Tokenizing chunk {}'.format(index), end='...')
for row, entry in chunk.iterrows():
try:
word_list = nltk.word_tokenize(entry['comment_text'])
except TypeError:
continue
word_list = [word if not lower_case else word.lower() for word in word_list if
(keep_punc or word not in punctuations) and
(keep_stopwords or word not in stopwords.words()) and
(word not in quotes)]
chunk.at[row, 'comment_text'] = ' '.join(word_list)
if index == 0:
mode = 'w'
header = True
else:
mode = 'a'
header = False
chunk.to_csv(os.path.join(new_dir, new_name), index=False, mode=mode, header=header)
print('Tokenization complete.')
return os.path.join(file_dir, new_name)
def add_padding(file_dir, file_name, new_dir=None,
max_length=60, new_name='padded.csv'):
"""Add padding or cut off comments to make sure all the comments have the same length.
Args:
file_dir: String, directory of the target csv file.
file_name: String, name of the target csv file.
new_dir: String, new directory to save modified csv file.
max_length: Int, the length of comment should pad to.
new_name: string, name for new saved file.
Returns:
New file location
"""
def pad(comment, pad_to, padword='<pad>'):
"""This function does the actual padding on the comment string.
Args:
comment: String, comment content.
pad_to: Int, the length to pad the comment to.
padword: String, a fake word to pad empty spaces in the comment.
Returns:
padded_comment: String, padded comment.
"""
comment = str(comment)
comment_list = comment.split(' ')
short = pad_to - len(comment_list)
if short > 0:
comment_list += [padword] * short
else:
comment_list = comment_list[: pad_to]
return ' '.join(comment_list)
df = pd.read_csv(os.path.join(file_dir, file_name))
df['comment_text'] = df['comment_text'].apply(lambda comment: pad(comment, max_length))
# Save as new file or overwrite
if new_dir:
os.mkdir(os.path.join(file_dir, new_dir))
save_to = os.path.join(file_dir, new_dir, new_name)
else:
save_to = os.path.join(file_dir, new_name)
df.to_csv(save_to, index=False)
return save_to
def count_occurrences(file_name, chunk_size=20000, padword='<pad>'):
""" Count occurrences of words in dataset.
Sort all uncommon words as unknown to teach the model to deal with unseen words
in the test set.
Args:
file_name: String, csv file name.
chunk_size: Int, size of each chunk.
padword: String, padding word used in the dataset.
Returns:
word_count: dict, Occurrences of each word.
"""
df_chunks = pd.read_csv(file_name, chunksize=chunk_size)
word_count = defaultdict(lambda: 0)
for chunk in df_chunks:
for _, entry in chunk.iterrows():
comment_text = entry['comment_text'].split(' ')
for word in comment_text:
if word != padword:
word_count[word] += 1
return dict(word_count)
def build_vocab(word_count, threshold=5, padword='<pad>',
unknown='<unk>', modify=False, file_dir=None,
file_name=None, new_dir=None, new_name='replaced.csv',
chunk_size=20000, uncommon_limit=500, pickle_dir=None,
tsv_dir=None):
"""Build a vocabulary based on words that appear in the training set.
Words with number of occurrences below the threshold is sorted as unknown,
this teaches the model the handel unseen words in the testing set.
Args:
new_name: string, name for new saved file.
word_count: dict, dictionary that maps a word to its number of occurrences.
threshold: int, words with number of occurrences below this threshold is
considered uncommon and not added to the vocabulary.
padword: string, string value used as a padding word.
unknown: string, string value to designate unknown words.
modify: int, set True to modify csv file (replace less common words with
unknown tag).
file_dir: string, dir of base csv file.
file_name: string, file name of base csv file.
new_dir: string, set the argument only if you want to save the modified csv as
a new file to a sub dir.
chunk_size: int, size of each chunk when reading csv.
uncommon_limit: int, size limit of the uncommon word list.
pickle_dir: string, name of directory to store pickeled lookup dictionaries.
the dictionary is not saved if a value is not provided. Defaults None.
tsv_dir: string, name of directory to store tsv look up.
Returns:
vocab: dict, vocabulary mapping.
reverse_vocab: dict, reversed vocabulary mapping.
or None if mode 2 is selected.
"""
vocab = {unknown: 0, padword: 1}
uncommon = []
index = 2
for word, occurrences in word_count.items():
if occurrences > threshold and word != padword and word != unknown:
vocab[word] = index
index += 1
elif len(uncommon) < uncommon_limit:
uncommon.append(word)
# Create reverse mapping vocabulary.
reverse_vocab = {id_: word for word, id_ in vocab.items()}
new_dir = os.path.join(file_dir, new_dir) if new_dir else file_dir
if not os.path.exists(new_dir):
os.makedirs(new_dir)
if modify:
if not file_dir and not file_name:
raise ValueError('Arguments file_dir and file_name are required.')
df_chunks = pd.read_csv(os.path.join(file_dir, file_name), chunksize=chunk_size)
processes = cpu_count()
for index, chunk in enumerate(df_chunks):
print('Processing chunk {}'.format(index), end='...')
with Pool(processes) as pool:
step = chunk_size // processes
chunk_splits = [chunk.iloc[i * step: step * (i + 1)] for i in range(processes)]
results = pool.starmap(_find_replace, zip(chunk_splits, repeat(uncommon), repeat(unknown)))
chunk = pd.concat(results)
if index == 0:
mode = 'w'
header = True
else:
mode = 'a'
header = False
chunk.to_csv(os.path.join(new_dir, new_name), index=False, mode=mode, header=header)
print('Complete')
if pickle_dir:
if not os.path.exists(pickle_dir):
os.makedirs(pickle_dir)
with open(os.path.join(pickle_dir, 'vocabulary.pickle'), 'wb') as saver:
pickle.dump((vocab, reverse_vocab), saver, protocol=pickle.HIGHEST_PROTOCOL)
if tsv_dir:
if not os.path.exists(tsv_dir):
os.makedirs(tsv_dir)
with open(os.path.join(tsv_dir, 'metadata.tsv'), 'w') as meta_saver:
meta_saver.write('ID\tWord\n')
for id_, word in reverse_vocab.items():
meta_saver.write('{}\t{}\n'.format(id_, word))
return vocab, reverse_vocab
def _find_replace(df, uncommon, unknown):
"""Helper function for building vocabulary
"""
for row, entry in df.iterrows():
comment_text = entry['comment_text'].split(' ')
comment_text = [word if word not in uncommon else unknown for word in comment_text]
df.at[row, 'comment_text'] = ' '.join(comment_text)
return df
def translate(file_dir, file_name, vocabulary,
new_dir=None, new_name='translated.csv', chunk_size=40000,
word_to_id=True, unknown='<unk>', max_length=60,
translate_mode='document', ngram_name='ngram.csv', window=3):
"""Translate text in csv file either from word to id or id to word.
Args:
translate_mode: string, mode of translation.
ngram_name: string, name for ngram file.
window: int, window size for skip gram.
new_name: string, name for new file.
file_dir: string, directory where the csv file is found.
file_name: string, name of the csv file.
vocabulary: string or tuple, vocabulary look up table. If this model is
provided as a string, it is location the pickle file is stored; otherwise,
it is a tuple the contains the vocabulary and the reverse lookup.
new_dir: string, directory to save the modified csv file. If this argument is
not provided the csv file is changed in place.
chunk_size: int, size of each chunk.
word_to_id: boolean, set to False to translate from id to string word.
unknown: string, designator for unseen words.
max_length: int, max length of each comment.
Returns:
None.
"""
df_chunks = pd.read_csv(os.path.join(file_dir, file_name), chunksize=chunk_size)
new_dir = os.path.join(file_dir, new_dir) if new_dir else file_dir
processes = cpu_count()
if vocabulary.__class__.__name__ == 'str':
ext = vocabulary.split('.')[-1]
if ext == 'pickle':
with open(vocabulary, 'rb') as loader:
vocab = pickle.load(loader)
elif ext == 'tsv':
vocab = [{}, {}]
with open(vocabulary) as file:
for line in file:
id_, word = line.split()
try:
vocab[0][word] = int(id_)
vocab[1][int(id_)] = word
except ValueError:
continue
else:
vocab = vocabulary
if not os.path.exists(new_dir):
os.makedirs(new_dir)
for index, chunk in enumerate(df_chunks):
print('Translating chunk {}'.format(index), end='...')
if index == 0:
mode = 'w'
header = True
else:
mode = 'a'
header = False
step = chunk_size // processes
if translate_mode == 'list':
translate_chunk = chunk
for i in range(max_length):
translate_chunk['v_{}'.format(i)] = 0 # 0 for unknown
translate_chunk['v_{}'.format(i)].astype(int, copy=False)
with Pool(processes) as pool:
chunk_splits = [translate_chunk.iloc[i * step: step * (i + 1)] for i in range(processes)]
results = pool.starmap(_translate_comment, zip(chunk_splits, repeat(word_to_id),
repeat(vocab), repeat(unknown)))
translate_chunk = pd.concat(results)
translate_chunk.to_csv(os.path.join(new_dir, new_name), index=False, mode=mode, header=header)
elif translate_mode == 'ngram':
ngram_chunk = chunk
with Pool(processes) as pool:
splits = [ngram_chunk.iloc[i * step: step * (i + 1)] for i in range(processes)]
results = pool.starmap(_create_ngram, zip(splits, repeat(window)))
new_ngram = pd.concat(results)
new_ngram.to_csv(os.path.join(new_dir, ngram_name), index=False, mode=mode, header=header)
elif translate_mode == 'document':
str_chunk = chunk
with Pool(processes) as pool:
splits = [str_chunk.iloc[i * step: step * (i + 1)] for i in range(processes)]
results = pool.starmap(_translate_comment_str, zip(splits, repeat(word_to_id),
repeat(vocab), repeat(unknown)))
str_chunk = pd.concat(results)
str_chunk.to_csv(os.path.join(new_dir, new_name), index=False, mode=mode, header=header)
print('Complete')
def _create_ngram(df, window):
"""Helper function for creating ngram
"""
ngram_df = pd.DataFrame(columns=['target', 'context'])
either_side = (window - 1) // 2
for _, entry in df.iterrows():
comment_text = entry['comment_text'].split(' ')
for index in range(either_side, len(comment_text) - either_side):
for pos in range(1, either_side + 1):
ngram_df.loc[len(ngram_df)] = [comment_text[index], comment_text[index - pos]]
ngram_df.loc[len(ngram_df)] = [comment_text[index], comment_text[index + pos]]
return ngram_df
def _translate_comment_str(df, word_to_id, vocab,
unknown):
translation_table = vocab[0] if word_to_id else vocab[1]
for row, entry in df.iterrows():
comment_text = entry['comment_text'].split(' ')
translated = []
for index, word in enumerate(comment_text):
try:
translated_word = str(translation_table[word])
except KeyError:
translated_word = str(translation_table[unknown])
translated.append(translated_word)
df.at[row, 'comment_text'] = ' '.join(translated)
return df
def _translate_comment(df, word_to_id, vocab,
unknown):
"""Helper function for translating csv files
"""
translation_table = vocab[0] if word_to_id else vocab[1]
for row, entry in df.iterrows():
comment_text = entry['comment_text'].split(' ')
for index, word in enumerate(comment_text):
try:
translated_word = translation_table[word]
except KeyError:
translated_word = translation_table[unknown]
df.at[row, 'v_{}'.format(index)] = int(translated_word)
return df
def split_data(file_dir, file_name, test_size=0.2, length=120):
df = pd.read_csv(os.path.join(file_dir, file_name))
df = df.astype({'v_{}'.format(i): int for i in range(length)})
df_test = df.sample(frac=test_size)
df_train = df.drop(df_test.index)
df_train.to_csv(os.path.join(file_dir, 'train_split.csv'), index=False)
df_test.to_csv(os.path.join(file_dir, 'test_split.csv'), index=False)
def build_vocab_from_file(vec_file, pad='<pad>', unknown='<unk>',
limit=60000, skip_header=1, save_dict=True):
""" Extract vocabulary and embeddings from pre trained embedding file.
Args:
vec_file: string, name of embedding file.
pad: string, pad word token.
unknown: string, unknown word token
limit: int, upper limit of vocab size.
skip_header: int, number of header lines to skip.
save_dict: bool, set True to save word to id look up table as tsv file.
Returns:
word2id: dict, string word to id mapping.
embeddings: list, list of word vectors.
"""
word2id = {pad: 0, unknown: 1}
embeddings = []
with open(vec_file) as file:
for index, entry in enumerate(file):
if index + 1 > skip_header:
values = entry.split()
word = values[0]
weights = np.asarray(values[1:], dtype=np.float32)
word2id[word] = index + 1
embeddings.append(weights)
if index + 1 - skip_header == limit:
break
embedding_size = len(embeddings[0])
# Random for unknown
embeddings.insert(0, np.random.randn(embedding_size))
# Random for padding, padding will be masked during lookup.
embeddings.insert(0, np.random.randn(embedding_size))
embeddings = np.array(embeddings, dtype=np.object)
if save_dict:
if not os.path.exists('metadata'):
os.makedirs('metadata')
with open(os.path.join('metadata', 'word2id.tsv'), 'w') as meta_saver:
meta_saver.write('Word\tid_\n')
for word, id_ in word2id.items():
meta_saver.write('{}\t{}\n'.format(word, id_))
with open(os.path.join('metadata', 'word2id.pickle'), 'wb') as meta_saver:
pickle.dump(word2id, meta_saver, pickle.HIGHEST_PROTOCOL)
return word2id, embeddings
def quick_process(file_dir, seq_length):
""" Default method for preprocessing WikiMedia dataset.
Call it and forget it.
Args:
file_dir: string, dir to csv file.
seq_length: string, length of each sequence after processing.
Returns:
None.
"""
tokenize_comments(file_dir=file_dir, file_name='train.csv',
keep_stopwords=True, lower_case=True)
add_padding(file_dir=file_dir, file_name='tokenized.csv', max_length=seq_length)
word2id, embeddings = build_vocab_from_file(
vec_file='/home/snowman/Documents/datasets/wiki-news-300d-1M.vec', save_dict=False)
translate(file_dir=file_dir, file_name='padded.csv',
vocabulary=(word2id, None), max_length=seq_length,
translate_mode='list')
split_data(file_dir='/home/snowman/Documents/datasets/toxic',
file_name='translated.csv', test_size=0.05, length=seq_length)