-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gpt_triples.py
218 lines (173 loc) · 7.61 KB
/
train_gpt_triples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os, sys
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn import DataParallel
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import Compose
from tqdm import tqdm
import argparse
from utils import on_local
from rplan import Rplan, Flip, Rot90, LIFULL
from gpt2 import GPT2Model
from transformers.configuration_gpt2 import GPT2Config
import wandb
import json
import uuid
import uuid, shutil
from glob import glob
from datetime import datetime as dt
PROJECT = 'Triples_hw'
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Model corrector', conflict_handler='resolve')
# Model
parser.add_argument('--epochs', default=40, type=int, help='number of total epochs to run')
parser.add_argument('--dim', default=264, type=int, help='number of dims of transformer')
parser.add_argument('--seq_len', default=120, type=int, help='the number of vertices')
parser.add_argument('--edg_len', default=48, type=int, help='how long is the edge length or door length')
parser.add_argument('--vocab', default=65, type=int, help='quantization levels')
parser.add_argument('--tuples', default=5, type=int, help='3 or 5 based on initial sampler')
parser.add_argument('--doors', default='all', type=str, help='h/v/all doors')
parser.add_argument('--enc_n', default=120, type=int, help='number of encoder tokens')
parser.add_argument('--enc_layer', default=12, type=int, help='number of encoder layers')
parser.add_argument('--dec_n', default=48, type=int, help='number of decoder tokens')
parser.add_argument('--dec_layer', default=12, type=int, help='number of decoder layers')
# optimizer
parser.add_argument('--step', default=15, type=int, help='how many epochs before reducing lr')
parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float, help='initial learning rate')
parser.add_argument('--gamma', default=0.1, type=float, help='reduction in lr')
parser.add_argument('--bs', default=64, type=int, help='batch size')
# Data
parser.add_argument("--root_dir", default=".", type=str, help="Root folder to save data in")
parser.add_argument("--datapath", default='.', type=str, help="Root folder to save data in")
parser.add_argument('--wh', default=False, type=bool, help='Enable id,w,h as triples dataset')
# Notes
parser.add_argument("--notes", default='', type=str, help="Wandb notes")
parser.add_argument("--tags", default='', type=str, help="Wandb tags")
args = parser.parse_args()
if on_local():
args.root_dir = './'
# args.datapath = '/mnt/iscratch/datasets/rplan_ddg_var'
args.datapath = '/mnt/iscratch/datasets/lifull_ddg_var'
else: # assume IBEX
args.root_dir = '/ibex/scratch/parawr/floorplan/'
args.datapath = '/ibex/scratch/parawr/datasets/rplan_ddg_var'
from random import choice
# args.lr = choice([0.001, 0.0005, 0.0007])
# dset = Rplan(root_dir=args.datapath,
# split='train',
# seq_len=120,
# vocab_size=65,
# drop_dim=True)
dset = LIFULL(root_dir=args.datapath,
split='train',
seq_len=120,
vocab_size=65,
drop_dim=True,
wh=args.wh)
dloader = DataLoader(dset, batch_size=64, num_workers=10, shuffle=True)
# val_set = Rplan(root_dir=args.datapath,
# split='val',
# seq_len=120,
# vocab_size=65,
# drop_dim=True)
val_set = LIFULL(root_dir=args.datapath,
split='val',
seq_len=120,
vocab_size=65,
drop_dim=True,
wh=args.wh)
val_loader = DataLoader(val_set, batch_size=64, num_workers=10)
config = GPT2Config(
vocab_size=args.vocab,#65,
n_positions=args.seq_len,#120,
n_ctx=args.seq_len,#120,
n_embd=args.dim,
n_layer=args.enc_layer,
n_head=12,
is_causal=True,
is_encoder=False,
n_types=3
)
model = GPT2Model(config)
model = DataParallel(model.cuda())
optimizer = Adam(model.parameters(), lr=args.lr)
lr_scheduler = StepLR(optimizer, step_size=args.step, gamma=args.gamma)
run_id = "GraphGPTxy-{}-bs{}-lr{}-enl{}-decl{}-dim_embed{}-{}".format(dt.now().strftime('%d-%h_%H-%M'),
args.bs, args.lr, args.enc_layer,
args.dec_layer,
args.dim, uuid.uuid4())
wandb.init(project=PROJECT, name=run_id, config=args, dir=".", save_code=True, notes=args.notes)
wandb.watch(model)
global_steps = 1
val_steps = 1
if args.wh:
save_suffix = 'wh'
else:
save_suffix = 'xy'
SAVE_LOCATION = args.root_dir + f'models/triples_{save_suffix}/' + run_id + '/'
if not os.path.exists(SAVE_LOCATION):
os.makedirs(SAVE_LOCATION, exist_ok=True)
code_dir = SAVE_LOCATION + 'code'
if not os.path.exists(SAVE_LOCATION):
os.makedirs(code_dir)
py_files = glob('./*.py')
for code_file in py_files:
shutil.copy(code_file, code_dir)
argsdict = vars(args)
args_file = SAVE_LOCATION + 'args.json'
with open(args_file, 'w') as fd:
json.dump(argsdict, fd,
indent=4)
best_nll = np.inf
for epochs in range(args.epochs):
model.train()
for steps, data in tqdm(enumerate(dloader)):
global_steps += 1
optimizer.zero_grad()
seq = data['seq']
attn_mask = data['attn_mask']
pos_id = data['pos_id']
loss = model( input_ids=seq,
attention_mask=attn_mask,
position_ids=pos_id,
labels=seq)
# print(len(loss))
# for v in loss:
# if isinstance(v, torch.Tensor):
# print(v.shape)
# else:
# for vv in v:
# print('\t', vv.shape)
loss[0].mean().backward()
optimizer.step()
wandb.log({'loss/train': loss[0].mean()}, step=global_steps)
torch.save(model.state_dict(), SAVE_LOCATION+ f'triples_hw3.pth')
lr_scheduler.step()
model.eval()
val_step_size = (global_steps - val_steps) // len(val_loader)
all_val_stats = []
with torch.no_grad():
for steps, data in tqdm(enumerate(val_loader)):
seq = data['seq']
attn_mask = data['attn_mask']
pos_id = data['pos_id']
loss = model(input_ids=seq,
attention_mask=attn_mask,
position_ids=pos_id,
labels=seq)
all_val_stats.append(loss[0].mean().item())
# writer.add_scalar('loss/val', loss[0].mean(), global_step=global_steps)
# val_steps += val_step_size
total_nll = np.mean(np.asarray(all_val_stats))
wandb.log({'loss/val': total_nll}, step=global_steps)
global_steps += 1
if total_nll <= best_nll:
best_nll = total_nll
torch.save(model.state_dict(), SAVE_LOCATION+ f'triples_hw3_best.pth')
# writer.close()