-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
executable file
·263 lines (243 loc) · 10.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from metrics import accuracy
from pytorchtools import EarlyStopping
import torch
import numpy as np
import os
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import wandb
from CLDataset import MyDataset
experience = 5
def trainES(train_data, test_data, model, criterion, optimizer, max_epoch, device, patience, func_sim=False):
# to track the training loss as the model trains
train_losses = []
# to track the validation loss as the model trains
valid_losses = []
# to track the average training loss per epoch as the model trains
avg_train_losses = []
# to track the average validation loss per epoch as the model trains
avg_valid_losses = []
train_accs = []
valid_accs = []
avg_train_accs = []
avg_valid_accs = []
new_task_first_loss = float('inf')
# initialize the early_stopping object
early_stopping = EarlyStopping(patience=patience, verbose=True)
for e in range(max_epoch):
model.train()
for k, batch in enumerate(train_data): # 对当前批次数据取出batch数据并开始训练model
# 获取数据与标签
x_train, y_train = batch[0].to(device), batch[1].to(device)
model.to(device)
y_pred = model(x_train)
loss = criterion(y_pred, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if k == 0 and func_sim:
new_task_first_loss = loss.item()
# RECORD training loss
train_losses.append(loss.item())
train_accs.append(accuracy(y_pred, y_train).item())
# validation
model.eval()
with torch.no_grad():
for test_batch in test_data:
x_test, y_test = test_batch[0].to(device), test_batch[1].to(device)
model.to(device)
y_pred = model(x_test)
test_loss = criterion(y_pred, y_test)
# record valid loss
valid_losses.append(test_loss.item())
valid_accs.append(accuracy(y_pred, y_test).item())
# print training/validation statistics
# calculate average loss over an epoch
train_loss = np.average(train_losses)
valid_loss = np.average(valid_losses)
train_acc = np.average(train_accs)
valid_acc = np.average(valid_accs)
avg_train_losses.append(train_loss)
avg_valid_losses.append(valid_loss)
avg_train_accs.append(train_acc)
avg_valid_accs.append((valid_acc))
epoch_len = len(str(max_epoch))
print_msg = (f'[{e:>{epoch_len}}/{max_epoch:>{epoch_len}}] ' +
f' train_loss: {train_loss:.5f}' +
f' valid_loss: {valid_loss:.5f}' +
f' train_acc: {train_acc:.5f}' +
f' valid_acc: {valid_acc:.5f}')
print(print_msg)
train_losses = []
valid_losses = []
early_stopping(valid_loss, model)
if early_stopping.early_stop:
print("Early stopping")
break
# load the last checkpoint with the best model
model.load_state_dict(torch.load('checkpoint.pt'))
return model, avg_train_losses, avg_train_accs, avg_valid_losses, avg_valid_accs, new_task_first_loss
def train(train_data, test_data, model, criterion, optimizer, max_epoch, device, func_sim=False):
# to track the training loss as the model trains
train_losses = []
# to track the validation loss as the model trains
valid_losses = []
# to track the average training loss per epoch as the model trains
avg_train_losses = []
# to track the average validation loss per epoch as the model trains
avg_valid_losses = []
train_accs = []
valid_accs = []
avg_train_accs = []
avg_valid_accs = []
new_task_first_loss = float('inf')
for e in range(max_epoch):
model.train()
for k, batch in enumerate(train_data): # 对当前批次数据取出batch数据并开始训练model
# 获取数据与标签
x_train, y_train = batch[0].to(device), batch[1].to(device)
model.to(device)
y_pred = model(x_train)
loss = criterion(y_pred, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if k == 1 and func_sim:
new_task_first_loss = loss.item()
# RECORD training loss
train_losses.append(loss.item())
train_accs.append(accuracy(y_pred, y_train).item())
# validation
model.eval()
with torch.no_grad():
for test_batch in test_data:
x_test, y_test = test_batch[0].to(device), test_batch[1].to(device)
model.to(device)
y_pred = model(x_test)
test_loss = criterion(y_pred, y_test)
# record valid loss
valid_losses.append(test_loss.item())
valid_accs.append(accuracy(y_pred, y_test).item())
# print training/validation statistics
# calculate average loss over an epoch
train_loss = np.average(train_losses)
valid_loss = np.average(valid_losses)
train_acc = np.average(train_accs)
valid_acc = np.average(valid_accs)
avg_train_losses.append(train_loss)
avg_valid_losses.append(valid_loss)
avg_train_accs.append(train_acc)
avg_valid_accs.append((valid_acc))
epoch_len = len(str(max_epoch))
print_msg = (f'[{e:>{epoch_len}}/{max_epoch:>{epoch_len}}] ' +
f' train_loss: {train_loss:.5f} ' +
f' valid_loss: {valid_loss:.5f}' +
f' train_acc: {train_acc:.5f}' +
f' valid_acc: {valid_acc:.5f}')
print(print_msg)
train_losses = []
valid_losses = []
return model, avg_train_losses, avg_train_accs, avg_valid_losses, avg_valid_accs, new_task_first_loss
def test(test_data, model, criterion, device):
model.eval()
test_data_loss = 0
test_data_acc = 0
for t_j, test_batch in enumerate(test_data):
x_test, y_test = test_batch[0].to(device), test_batch[1].to(device)
model.to(device)
test_pred = model(x_test)
loss = criterion(test_pred, y_test)
test_data_loss += loss * test_data.batch_size
test_data_acc += accuracy(test_pred, y_test)
test_loss = test_data_loss / len(test_data.dataset)
acc = test_data_acc / (t_j + 1)
print("-----------test loss {:.4}, acc {:.4} ".format(test_loss, acc))
return test_loss.cpu(), acc.cpu()
def get_Cifar10(train_bs=128, test_bs=128):
train_dir = os.path.join("./", "Data", "SplitCifar10", "train")
test_dir = os.path.join("./", "Data", "SplitCifar10", "test")
train_stream = []
test_stream = []
# MNIST 数据集处理
trainTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
# 构建CLMyDataset实例
for e in range(experience):
# 确定当前context的数据源路径
train_txt_path = train_dir + ' ' + str(e) + '.txt'
test_txt_path = test_dir + ' ' + str(e) + '.txt'
# 创建Dataset实例
train_data = MyDataset(txt_path=train_txt_path, transform=trainTransform)
test_data = MyDataset(txt_path=test_txt_path, transform=testTransform)
# 构建CLDataLoader
train_loader = DataLoader(dataset=train_data, batch_size=train_bs, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=train_bs*2)
test_loader = DataLoader(dataset=test_data, batch_size=test_bs, num_workers=2, pin_memory=True, prefetch_factor=test_bs*2)
# 添加到stream list中
train_stream.append(train_loader)
test_stream.append(test_loader)
return train_stream, test_stream
def get_Cifar100(train_bs=128, test_bs=128):
base_dir = "/home/acq21xw"
train_dir = os.path.join(base_dir, "Data", "SplitCifar100_2class", "train")
test_dir = os.path.join(base_dir, "Data", "SplitCifar100_2class", "test")
train_stream = []
test_stream = []
# MNIST 数据集处理
trainTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
# 构建CLMyDataset实例
for e in range(experience):
# 确定当前context的数据源路径
train_txt_path = train_dir + ' ' + str(e) + '.txt'
test_txt_path = test_dir + ' ' + str(e) + '.txt'
# 创建Dataset实例
train_data = MyDataset(txt_path=train_txt_path, transform=trainTransform)
test_data = MyDataset(txt_path=test_txt_path, transform=testTransform)
# 构建CLDataLoader
train_loader = DataLoader(dataset=train_data, batch_size=train_bs, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=train_bs*2)
test_loader = DataLoader(dataset=test_data, batch_size=test_bs, num_workers=2, pin_memory=True, prefetch_factor=test_bs*2)
# 添加到stream list中
train_stream.append(train_loader)
test_stream.append(test_loader)
return train_stream, test_stream
def get_MNIST(train_bs=128, test_bs=128):
train_dir = os.path.join("Data", "SplitMNIST", "train")
test_dir = os.path.join("Data", "SplitMNIST", "test")
train_stream = []
test_stream = []
# MNIST 数据集处理
trainTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
# 构建CLMyDataset实例
for e in range(experience):
# 确定当前context的数据源路径
train_txt_path = train_dir + ' ' + str(e) + '.txt'
test_txt_path = test_dir + ' ' + str(e) + '.txt'
# 创建Dataset实例
train_data = MyDataset(txt_path=train_txt_path, transform=trainTransform)
test_data = MyDataset(txt_path=test_txt_path, transform=testTransform)
# 构建CLDataLoader
train_loader = DataLoader(dataset=train_data, batch_size=train_bs, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=test_bs)
# 添加到stream list中
train_stream.append(train_loader)
test_stream.append(test_loader)
return train_stream, test_stream