-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbpe.py
149 lines (126 loc) · 4.54 KB
/
bpe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import regex as re
import json
import os
def bytes_to_unicode():
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class Tokenizer:
def __init__(self, assert_dir: str):
self.unk_token = "<|unknown token|>"
self.pat = re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)
with open(os.path.join(assert_dir, "vocab.json"), encoding="utf-8") as f:
self.encoder = json.load(f)
self.decoder = {v: k for k, v in self.encoder.items()}
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.cache = {}
with open(os.path.join(assert_dir, "merges.txt"), encoding="utf-8") as f:
bpe_merges = f.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def tokenize(self, text):
bpe_tokens = []
eot = "<|endoftext|>"
s = 0
i = text.find(eot)
while i != -1:
bpe_tokens.extend(self._tokenize(text[s:i]))
bpe_tokens.append(eot)
s = i + len(eot)
i = text.find(eot, i + len(eot))
bpe_tokens.extend(self._tokenize(text[s:]))
return bpe_tokens
def encode(self, text):
return [self.encoder[token] for token in self.tokenize(text)]
def decode(self, indices):
text = "".join([self.decoder.get(index) for index in indices])
return bytearray(self.byte_decoder[c] for c in text).decode("utf-8")
def test_tokenizer():
t = Tokenizer(os.path.join(os.path.dirname(os.path.realpath(__file__)), "assets"))
# with open("/tmp/sample.txt") as f:
# for line in f:
# lst = t._tokenize(line[:-1]) # Remove the trailing '\n'.
# print(*lst, sep=', ') # Do no quote strings.
candidates = [
"this is <|endoftext|> else<|endoftext|>",
"<|endoftext|> else<|endoftext|>",
"this is <|endoftext|> else",
"this is <|endoftext|>else",
"this is else",
]
for s in candidates:
assert t.decode(t.encode(s)) == s
if __name__ == "__main__":
test_tokenizer()