-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenetic_Diff_Merge.py
executable file
·306 lines (238 loc) · 10.6 KB
/
Genetic_Diff_Merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python
# coding: utf-8
# In[31]:
import pickle
import os
from argparse import ArgumentParser
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split as splt
from sklearn.ensemble import RandomForestClassifier as rfc
from sklearn.model_selection import RepeatedStratifiedKFold as rskf
from sklearn.metrics import matthews_corrcoef as mcc
from sklearn.metrics import accuracy_score as acc
from scipy.sparse import csr_matrix
from typing import Tuple, Dict
# In[32]:
# =========
# CONSTANTS
# =========
gen_path = "/home/webvalley/score-machine-learning/Data/DBPLIC1_wScoreCLass.xlsx"
csv_path = "/home/webvalley/score-machine-learning/Data/Milano_with_score.csv"
DEFAULT_FEATURES_SET = ['lab:', 'ana_pat:', 'esa_obi:']
COMPLETE_FEATURES_SET = ['ana_fis:', 'ana_pat:', 'ana_far:', 'esa_obi:',
'lab:', 'end:', 'lun_bod_sca:', 'eco_art:']
CV_REPEATS = 10
CV_NSPLITS = 5
SCORE_COLS_BLACKLIST = ['esa_obi:sbp', 'esa_obi:dbp',
'ana_fis:smoking_recod', 'lab:glucose',
'lab:calculated_ldl',
'lab:total_cholesterol',
'ana:age']
TRAIN_TEST_SPLIT_RUN = 5
# In[58]:
def bootstrap_ci(x, B=1000, alpha=0.05, seed=42):
"""Computes the (1-alpha) Bootstrap confidence interval
from empirical bootstrap distribution of sample mean.
The lower and upper confidence bounds are the (B*alpha/2)-th
and B * (1-alpha/2)-th ordered means, respectively.
For B = 1000 and alpha = 0.05 these are the 25th and 975th
ordered means.
"""
x_arr = np.ravel(x)
if B < 2:
raise ValueError("B must be >= 2")
if alpha < 0 or alpha > 1:
raise ValueError("alpha must be in [0, 1]")
np.random.seed(seed)
bmean = np.empty(B, dtype=np.float)
for b in range(B):
idx = np.random.random_integers(0, x_arr.shape[0] - 1, x_arr.shape[0])
bmean[b] = np.mean(x_arr[idx])
bmean.sort()
lower = int(B * (alpha * 0.5))
upper = int(B * (1 - (alpha * 0.5)))
return (bmean[lower], bmean[upper])
def read_data(csv_data_file):
df = pd.read_csv(csv_data_file)
df.set_index('patient_id', inplace=True)
df.sort_values("visit:visit")
return df
def filter_data(df, ):
"""
"""
df = df.select_dtypes(exclude=['object', 'datetime64'])
df = df.drop(labels=SCORE_COLS_BLACKLIST, axis=1)
# Get rid of all columns with all -1 (NaN) and/or Zeros
df = df[df.columns[df.max() > 0]]
df = df[df.columns[df.var() > 0.1]]
df = df[df.columns[df.median() != -1]]
return df
def select_features_set(df, features_set):
features = list(features_set) + ['patient_id', 'ScoreClass', 'visit:visit']
return df[df.columns[df.columns.str.startswith(tuple(features))]]
# In[64]:
def get_data_for_visits(df, features_set, visits_map):
"""
"""
target_features = df #select_features_set(df, features_set)
#***Uncomment if using genetic features***
#target_features = fuse_genetic(target_features, load_genetic_data(gen_path))
X, y = [], None
y = target_features[target_features['visit:visit'] == 3]['ScoreClass'].values
X.append(filter_data(target_features[target_features['visit:visit'] == 0].drop(['ScoreClass', 'visit:visit'], axis=1)))
X.append(filter_data(target_features[target_features['visit:visit'] == 1].drop(['ScoreClass', 'visit:visit'], axis=1)))
# Convert Dense Matrix to a Sparse one
# CSR_Sparse considers "0" as the empty value - not -1 as in the dataset
# so we sum +1 to all the values
X[0] = X[0].select_dtypes(exclude=['int'])
X[1] = X[1].select_dtypes(exclude=['int'])
X_feature_names = list(X[0].columns.values)
X_features = list(X[0].values.transpose())
print("DEBUG: ", X[0].values.shape)
X_common_features = set(X[0].columns.values).intersection(X[1].columns.values)
for feature in X_common_features:
if "score" in feature:
continue
X_feature_names.append(feature)
X_features.append(X[1][feature].values - X[0][feature].values)
X_np = np.array(X_features)
X_np += 1
X_np = X_np.transpose()
print(X_np)
print(type(X_np))
print(X_np.shape)
X_csr = csr_matrix(X_np)
# CROSSCHECK
# ----------
print('Dataset Shapes CrossCheck: ')
print('X shape: ', X_csr.shape)
print('y shape: ', y.shape)
return X_csr, y
def get_stratification_array(df, visit_map):
# Stratification map of samples for each of the visits
visit_strat_map = {}
for visit_nb, group in df.groupby(["visit:visit"]):
visit_strat_map[visit_nb] = group.index.values
# Stratify samples based on Score and Sex
S = np.zeros(df.shape[0]) # all the numbers of samples
for i, (_, group) in enumerate(df.groupby(["ScoreClass", "ana:gender"])):
indices = group.index.values
S[indices] = i
return S
#return np.asarray([S[visit_strat_map[visit]] for visit in visit_map]).ravel()
def random_forest_training(X, y, stratify_array, experiment_folder_path,
train_test_splits=TRAIN_TEST_SPLIT_RUN,
cv_nsplits=CV_NSPLITS, cv_repeats=CV_REPEATS):
""""""
for train_test_split_run in range(train_test_splits):
mcc_scores = []
acc_scores = []
# Create the folder for the current experiment
train_test_run_folder_path = os.path.join(experiment_folder_path, '{}'.format(train_test_split_run))
os.makedirs(train_test_run_folder_path, exist_ok=True)
feat_rankings_folder = os.path.join(train_test_run_folder_path, 'features_importance')
os.makedirs(feat_rankings_folder, exist_ok=True)
X_tr, X_ts, y_tr, y_ts, S_tr, S_ts = splt(X, y, stratify_array, test_size=0.2,
random_state=train_test_split_run, stratify=stratify_array)
print('Experiment {} out of {} ...'.format(train_test_split_run + 1, train_test_splits), end=' ')
rskf_ = rskf(n_splits=cv_nsplits, n_repeats=cv_repeats, random_state=42)
cv_exp_number = 1
for train_index, val_index in rskf_.split(X_tr, S_tr):
X_train, X_val = X_tr[train_index], X_tr[val_index]
y_train, y_val = y_tr[train_index], y_tr[val_index]
forest = rfc(n_estimators=1000, n_jobs=-1)
forest.fit(X_train, y_train)
y_pred_val = forest.predict(X_val)
mc = mcc(y_val, y_pred_val)
ac = acc(y_val, y_pred_val)
mcc_scores.append(mc)
acc_scores.append(ac)
# Save Feature ranking
np.savez(os.path.join(feat_rankings_folder, 'feat_ranking_{:02d}.npz'.format(cv_exp_number)),
ranking=forest.feature_importances_)
rf_pickle_filepath = os.path.join(train_test_run_folder_path, 'forest_{:02d}.pkl'.format(cv_exp_number))
with open(rf_pickle_filepath, 'wb') as pickle_file:
pickle.dump(forest, pickle_file)
cv_exp_number += 1
# Re-train everything from scratch on the entire training set
forest = rfc(n_estimators=1000, n_jobs=-1)
forest.fit(X_tr, y_tr)
y_ts_our = forest.predict(X_ts)
mc = mcc(y_ts, y_ts_our)
ac = acc(y_ts, y_ts_our)
rf_pickle_filepath = os.path.join(train_test_run_folder_path, 'forest_training.pkl'.format(cv_exp_number))
with open(rf_pickle_filepath, 'wb') as pickle_file:
pickle.dump(forest, pickle_file)
# Store the logs for this experiment
log_file_path = os.path.join(train_test_run_folder_path, 'log.csv')
mcc_ci_min, mcc_ci_max = bootstrap_ci(np.asarray(mcc_scores))
acc_ci_min, acc_ci_max = bootstrap_ci(np.asarray(acc_scores))
scores = pd.DataFrame({'ACC': np.mean(acc_scores),
'ACC_CI_MIN': acc_ci_min, 'ACC_CI_MAX': acc_ci_max,
'MCC': np.mean(mcc_scores),
'MCC_CI_MIN': mcc_ci_min, 'MCC_CI_MAX': mcc_ci_max,
'ACC_TEST': ac, 'MCC_TEST': mc}, index=[0])
scores.to_csv(log_file_path, sep=',')
print('Done')
# In[65]:
def run_experiment(csv_data_file: str, features_set: Tuple,
visit_map: Dict, exp_log_folder_path: str):
# visit_map: {0: 0, 1:1...} OR {0: 3}...
# Create the folder in which logs will be saved
os.makedirs(exp_log_folder_path, exist_ok=True)
df = read_data(csv_data_file)
X, y = get_data_for_visits(df, features_set, visit_map)
# Stratify based on Score class and Gender
S = get_stratification_array(df, visit_map)
random_forest_training(X, y, S[0:1445], exp_log_folder_path)
# In[ ]:
def load_genetic_data(DATA_DIR):
genetic_data = pd.read_excel(DATA_DIR)
genetic_data = genetic_data.dropna(subset=["ScoreClass"], axis=0)
#genetic_data = genetic_data.rename(columns={"ScoreClass":"GeneticScoreClass"})
genetic_data = genetic_data.drop(labels=['Unnamed: 0','Score','ScoreClass'],axis=1)
#Clean out binned data
genetic_columns = list(genetic_data.columns)
todrop_genetic_columns = []
counter = 0
for index, value in enumerate(genetic_columns):
if ('VS') in value:
todrop_genetic_columns.append(value)
counter += 1
elif('vs' in value):
todrop_genetic_columns.append(value)
counter += 1
elif('1_2e3' in value):
todrop_genetic_columns.append(value)
counter += 1
final_data = genetic_data.drop(labels=todrop_genetic_columns,axis=1)
final_data.apply(pd.to_numeric)
final_data = final_data.fillna(value=-1)
return final_data
def fuse_genetic(df_reg, df_gen):
d = {i: df_reg.loc[df_reg.patient_id == i, df_reg.columns] for i in range(df_reg.patient_id.iat[-1]+1)}
d = {dx: d[dx] for dx in d if d[dx].shape[0] != 0}
dd = {}
newDfDf = pd.DataFrame()
for row in df_gen.iterrows():
row = row[1]
subid = row['cod_pz']
if subid in d:
newDf = pd.DataFrame()
for index, series in d[subid].iterrows():
tempSeries = series.append(row)
score = tempSeries.score
if score < 1:
scoreClass = 0
elif score < 2:
scoreClass = 1
elif score < 5:
scoreClass = 2
else:
scoreClass = 3
tempSeries['ScoreClass'] = scoreClass
newDf = newDf.append(tempSeries, ignore_index=True)
newDfDf = newDfDf.append(newDf, ignore_index=True)
return newDfDf
run_experiment(csv_path, (), {}, "folder_name")