-
Notifications
You must be signed in to change notification settings - Fork 130
3. User's Guide
CD-HIT clusters proteins into clusters that meet a user-defined similarity threshold, usually a sequence identity. Each cluster has one representative sequence. The input is a protein dataset in fasta format and the output are two files: a fasta file of representative sequences and a text file of list of clusters.
Basic command:
cd-hit -i nr -o nr100 -c 1.00 -n 5 -M 16000 –d 0 -T 8 cd-hit -i db -o db90 -c 0.9 -n 5 -M 16000 –d 0 -T 8 where db is the filename of input, db90 is output, -c 1.0, means 100% identity, is the clustering threshold -c 0.9, means 90% identity, is the clustering threshold -n 5 is the word size -d 0 use sequence name in fasta header till the first white space -M 16000, to use 16GB RAM -T 8, to use 8 threads
Choose of word size: -n 5 for thresholds 0.7 ~ 1.0 -n 4 for thresholds 0.6 ~ 0.7 -n 3 for thresholds 0.5 ~ 0.6 -n 2 for thresholds 0.4 ~ 0.5
Complete options:
The most updated options are available from the command line version of the programs. Running the programs without any argument will print out the detailed options.
-i input filename in fasta format, required -o output filename, required -c sequence identity threshold, default 0.9 this is the default cd-hit's "global sequence identity" calculated as: number of identical amino acids in alignment divided by the full length of the shorter sequence -G use global sequence identity, default 1 if set to 0, then use local sequence identity, calculated as : number of identical amino acids in alignment divided by the length of the alignment NOTE!!! don't use -G 0 unless you use alignment coverage controls see options -aL, -AL, -aS, -AS -b band_width of alignment, default 20 -M memory limit (in MB) for the program, default 800; 0 for unlimitted; -T number of threads, default 1; with 0, all CPUs will be used -n word_length, default 5, see user's guide for choosing it -l length of throw_away_sequences, default 10 -t tolerance for redundance, default 2 -d length of description in .clstr file, default 20 if set to 0, it takes the fasta defline and stops at first space -s length difference cutoff, default 0.0 if set to 0.9, the shorter sequences need to be at least 90% length of the representative of the cluster -S length difference cutoff in amino acid, default 999999 if set to 60, the length difference between the shorter sequences and the representative of the cluster can not be bigger than 60 -aL alignment coverage for the longer sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AL alignment coverage control for the longer sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -aS alignment coverage for the shorter sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AS alignment coverage control for the shorter sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -A minimal alignment coverage control for the both sequences, default 0 alignment must cover >= this value for both sequences -uL maximum unmatched percentage for the longer sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -uS maximum unmatched percentage for the shorter sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -U maximum unmatched length, default 99999999 if set to 10, the unmatched region (excluding leading and tailing gaps) must not be more than 10 bases -B 1 or 0, default 0, by default, sequences are stored in RAM if set to 1, sequence are stored on hard drive !! No longer supported !! -p 1 or 0, default 0 if set to 1, print alignment overlap in .clstr file -g 1 or 0, default 0 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -sc sort clusters by size (number of sequences), default 0, output clusters by decreasing length if set to 1, output clusters by decreasing size -sf sort fasta/fastq by cluster size (number of sequences), default 0, no sorting if set to 1, output sequences by decreasing cluster size -bak write backup cluster file (1 or 0, default 0) -h print this help
Alignment coverage control:
See the figure below, the -aL, -AL, -aS and -AS options can be used to specify the alignment coverage on both the representative sequence and other sequences. -s and -S can control the length difference between the representative sequence and other sequences.
aL = Ra / R AL = R - Ra aS = Sa / S AS = S - Sa s = Sa / Ra S = R / S U = S1 + S2 uL = U / R uS = U / S
The output .clstr file looks like
>Cluster 0 0 2799aa, >PF04998.6|RPOC2_CHLRE/275-3073... * >Cluster 1 0 2214aa, >PF06317.1|Q6Y625_9VIRU/1-2214... at 80% 1 2215aa, >PF06317.1|O09705_9VIRU/1-2215... at 84% 2 2217aa, >PF06317.1|Q6Y630_9VIRU/1-2217... * 3 2216aa, >PF06317.1|Q6GWS6_9VIRU/1-2216... at 84% 4 527aa, >PF06317.1|Q67E14_9VIRU/6-532... at 63% >Cluster 2 0 2202aa, >PF06317.1|Q6UY61_9VIRU/8-2209... at 60% 1 2208aa, >PF06317.1|Q6IVU4_JUNIN/1-2208... * 2 2207aa, >PF06317.1|Q6IVU0_MACHU/1-2207... at 73% 3 2208aa, >PF06317.1|RRPO_TACV/1-2208... at 69%where a ">" starts a new cluster a "*" at the end means that this sequence is the representative of this cluster a "%" is the identity between this sequence and the representative
CD-HIT-2D compares 2 protein datasets (db1, db2). It identifies the sequences in db2 that are similar to db1 at a certain threshold. The input are two protein datasets (db1, db2) in fasta format and the output are two files: a fasta file of proteins in db2 that are not similar to db1 and a text file that lists similar sequences between db1 & db2.
Basic command:
cd-hit-2d -i db1 -i2 db2 -o db2novel -c 0.9 -n 5 -d 0 -M 16000 -T 8 where db1 & db2 are inputs db2novel is output 0.9 means 90% identity, is the comparing threshold 5 is the size of word
Please note that by default, cd-hit only lists matches where sequences in db2 are not longer than sequences in db1. You may use options -S2 or -s2 to overwrite this default. You can also swap db1 and db2:
cd-hit-2d -i db1 -i2 db2 -o db2novel -c 0.9 -n 5 -d 0 -M 16000 -T 8 -s2 0.9 cd-hit-2d -i db2 -i2 db1 -o db1novel -c 0.9 -n 5 -d 0 -M 16000 -T 8 (swap db1 and db2)
Choose of word size (same as cd-hit):
-n 5 for thresholds 0.7 ~ 1.0 -n 4 for thresholds 0.6 ~ 0.7 -n 3 for thresholds 0.5 ~ 0.6 -n 2 for thresholds 0.4 ~ 0.5
Options:
-i input filename for db1 in fasta format, required -i2 input filename for db2 in fasta format, required -o output filename, required -c sequence identity threshold, default 0.9 this is the default cd-hit's "global sequence identity" calculated as: number of identical amino acids in alignment divided by the full length of the shorter sequence -G use global sequence identity, default 1 if set to 0, then use local sequence identity, calculated as : number of identical amino acids in alignment divided by the length of the alignment NOTE!!! don't use -G 0 unless you use alignment coverage controls see options -aL, -AL, -aS, -AS -b band_width of alignment, default 20 -M memory limit (in MB) for the program, default 800; 0 for unlimitted; -T number of threads, default 1; with 0, all CPUs will be used -n word_length, default 5, see user's guide for choosing it -l length of throw_away_sequences, default 10 -t tolerance for redundance, default 2 -d length of description in .clstr file, default 20 if set to 0, it takes the fasta defline and stops at first space -s length difference cutoff, default 0.0 if set to 0.9, the shorter sequences need to be at least 90% length of the representative of the cluster -S length difference cutoff in amino acid, default 999999 if set to 60, the length difference between the shorter sequences and the representative of the cluster can not be bigger than 60 -s2 length difference cutoff for db1, default 1.0 by default, seqs in db1 >= seqs in db2 in a same cluster if set to 0.9, seqs in db1 may just >= 90% seqs in db2 -S2 length difference cutoff, default 0 by default, seqs in db1 >= seqs in db2 in a same cluster if set to 60, seqs in db2 may 60aa longer than seqs in db1 -aL alignment coverage for the longer sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AL alignment coverage control for the longer sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -aS alignment coverage for the shorter sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AS alignment coverage control for the shorter sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -A minimal alignment coverage control for the both sequences, default 0 alignment must cover >= this value for both sequences -uL maximum unmatched percentage for the longer sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -uS maximum unmatched percentage for the shorter sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -U maximum unmatched length, default 99999999 if set to 10, the unmatched region (excluding leading and tailing gaps) must not be more than 10 bases -B 1 or 0, default 0, by default, sequences are stored in RAM if set to 1, sequence are stored on hard drive !! No longer supported !! -p 1 or 0, default 0 if set to 1, print alignment overlap in .clstr file -g 1 or 0, default 0 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -bak write backup cluster file (1 or 0, default 0) -h print this help
CD-HIT-EST clusters a nucleotide dataset into clusters that meet a user-defined similarity threshold, usually a sequence identity. The input is a DNA/RNA dataset in fasta format and the output are two files: a fasta file of representative sequences and a text file of list of clusters. Since eukaryotic genes usually have long introns, which cause long gaps, it is difficult to make full-length alignments for these genes. So, CD-HIT-EST is good for non-intron containing sequences like EST.
Basic command:
cd-hit-est -i est_human -o est_human95 -c 0.95 -n 10 -d 0 -M 16000 -T 8 cd-hit-est -i R1.fa -j R2.fa -o R1.95.fa -op R2.95.fa -P 1 -c 0.95 -n 10 -d 0 -M 16000 -T 8
Choose of word size:
-n 10, 11 for thresholds 0.95 ~ 1.0 -n 8,9 for thresholds 0.90 ~ 0.95 -n 7 for thresholds 0.88 ~ 0.9 -n 6 for thresholds 0.85 ~ 0.88 -n 5 for thresholds 0.80 ~ 0.85 -n 4 for thresholds 0.75 ~ 0.8
Options:
-i input filename in fasta format, required -j input filename in fasta/fastq format for R2 reads if input are paired end (PE) files -i R1.fq -j R2.fq -o output_R1 -op output_R2 or -i R1.fa -j R2.fa -o output_R1 -op output_R2 -o output filename, required -op output filename for R2 reads if input are paired end (PE) files -c sequence identity threshold, default 0.9 this is the default cd-hit's "global sequence identity" calculated as: number of identical bases in alignment divided by the full length of the shorter sequence -G use global sequence identity, default 1 if set to 0, then use local sequence identity, calculated as : number of identical bases in alignment divided by the length of the alignment NOTE!!! don't use -G 0 unless you use alignment coverage controls see options -aL, -AL, -aS, -AS -b band_width of alignment, default 20 -M memory limit (in MB) for the program, default 800; 0 for unlimitted; -T number of threads, default 1; with 0, all CPUs will be used -n word_length, default 10, see user's guide for choosing it -l length of throw_away_sequences, default 10 -d length of description in .clstr file, default 20 if set to 0, it takes the fasta defline and stops at first space -s length difference cutoff, default 0.0 if set to 0.9, the shorter sequences need to be at least 90% length of the representative of the cluster -S length difference cutoff in amino acid, default 999999 if set to 60, the length difference between the shorter sequences and the representative of the cluster can not be bigger than 60 -aL alignment coverage for the longer sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AL alignment coverage control for the longer sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -aS alignment coverage for the shorter sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AS alignment coverage control for the shorter sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -A minimal alignment coverage control for the both sequences, default 0 alignment must cover >= this value for both sequences -uL maximum unmatched percentage for the longer sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -uS maximum unmatched percentage for the shorter sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -U maximum unmatched length, default 99999999 if set to 10, the unmatched region (excluding leading and tailing gaps) must not be more than 10 bases -B 1 or 0, default 0, by default, sequences are stored in RAM if set to 1, sequence are stored on hard drive !! No longer supported !! -P input paired end (PE) reads, default 0, single file if set to 1, please use -i R1 -j R2 to input both PE files -cx length to keep after trimming the tail of sequence, default 0, not trimming if set to 50, the program only uses the first 50 letters of input sequence -cy length to keep after trimming the tail of R2 sequence, default 0, not trimming if set to 50, the program only uses the first 50 letters of input R2 sequence e.g. -cx 100 -cy 80 for paired end reads -ap alignment position constrains, default 0, no constrain if set to 1, the program will force sequences to align at beginings when set to 1, the program only does +/+ alignment -p 1 or 0, default 0 if set to 1, print alignment overlap in .clstr file -g 1 or 0, default 0 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -r 1 or 0, default 1, by default do both +/+ & +/- alignments if set to 0, only +/+ strand alignment -mask masking letters (e.g. -mask NX, to mask out both 'N' and 'X') -match matching score, default 2 (1 for T-U and N-N) -mismatch mismatching score, default -2 -gap gap opening score, default -6 -gap-ext gap extension score, default -1 -bak write backup cluster file (1 or 0, default 0) -sc sort clusters by size (number of sequences), default 0, output clusters by decreasing length if set to 1, output clusters by decreasing size -sf sort fasta/fastq by cluster size (number of sequences), default 0, no sorting if set to 1, output sequences by decreasing cluster size -h print this help
CD-HIT-EST-2D compares 2 nucleotide datasets (db1, db2). It identifies the sequences in db2 that are similar to db1 at a certain threshold. The input are two DNA/RNA datasets (db1, db2) in fasta format and the output are two files: a fasta file of sequences in db2 that are not similar to db1 and a text file that lists similar sequences between db1 & db2. For same reason as CD-HIT-EST, CD-HIT-EST-2D is good for non-intron containing sequences like EST.
Basic command:
Choose of word size and options are the same as CD-HIT-EST:
Options:
-i input filename for db1 in fasta format, required -i2 input filename for db2 in fasta format, required -j, -j2 input filename in fasta/fastq format for R2 reads if input are paired end (PE) files -i db1-R1.fq -j db1-R2.fq -i2 db2-R1.fq -j2 db2-R2.fq -o output_R1 -op output_R2 or -i db1-R1.fa -j db1-R2.fa -i2 db2-R1.fq -j2 db2-R2.fq -o output_R1 -op output_R2 -o output filename, required -op output filename for R2 reads if input are paired end (PE) files -c sequence identity threshold, default 0.9 this is the default cd-hit's "global sequence identity" calculated as: number of identical bases in alignment divided by the full length of the shorter sequence -G use global sequence identity, default 1 if set to 0, then use local sequence identity, calculated as : number of identical bases in alignment divided by the length of the alignment NOTE!!! don't use -G 0 unless you use alignment coverage controls see options -aL, -AL, -aS, -AS -b band_width of alignment, default 20 -M memory limit (in MB) for the program, default 800; 0 for unlimitted; -T number of threads, default 1; with 0, all CPUs will be used -n word_length, default 10, see user's guide for choosing it -l length of throw_away_sequences, default 10 -d length of description in .clstr file, default 20 if set to 0, it takes the fasta defline and stops at first space -s length difference cutoff, default 0.0 if set to 0.9, the shorter sequences need to be at least 90% length of the representative of the cluster -S length difference cutoff in amino acid, default 999999 if set to 60, the length difference between the shorter sequences and the representative of the cluster can not be bigger than 60 -s2 length difference cutoff for db1, default 1.0 by default, seqs in db1 >= seqs in db2 in a same cluster if set to 0.9, seqs in db1 may just >= 90% seqs in db2 -S2 length difference cutoff, default 0 by default, seqs in db1 >= seqs in db2 in a same cluster if set to 60, seqs in db2 may 60aa longer than seqs in db1 -aL alignment coverage for the longer sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AL alignment coverage control for the longer sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -aS alignment coverage for the shorter sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AS alignment coverage control for the shorter sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -A minimal alignment coverage control for the both sequences, default 0 alignment must cover >= this value for both sequences -uL maximum unmatched percentage for the longer sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -uS maximum unmatched percentage for the shorter sequence, default 1.0 if set to 0.1, the unmatched region (excluding leading and tailing gaps) must not be more than 10% of the sequence -U maximum unmatched length, default 99999999 if set to 10, the unmatched region (excluding leading and tailing gaps) must not be more than 10 bases -B 1 or 0, default 0, by default, sequences are stored in RAM if set to 1, sequence are stored on hard drive !! No longer supported !! -P input paired end (PE) reads, default 0, single file if set to 1, please use -i R1 -j R2 to input both PE files -cx length to keep after trimming the tail of sequence, default 0, not trimming if set to 50, the program only uses the first 50 letters of input sequence -cy length to keep after trimming the tail of R2 sequence, default 0, not trimming if set to 50, the program only uses the first 50 letters of input R2 sequence e.g. -cx 100 -cy 80 for paired end reads -p 1 or 0, default 0 if set to 1, print alignment overlap in .clstr file -g 1 or 0, default 0 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -r 1 or 0, default 1, by default do both +/+ & +/- alignments if set to 0, only +/+ strand alignment -mask masking letters (e.g. -mask NX, to mask out both 'N' and 'X') -match matching score, default 2 (1 for T-U and N-N) -mismatch mismatching score, default -2 -gap gap opening score, default -6 -gap-ext gap extension score, default -1 -bak write backup cluster file (1 or 0, default 0) -h print this help
We implemented a program called cd-hit-454 to identify duplicated 454 reads by reengineering cd-hit-est. Duplicates are either exactly identical or meet these criteria includes: (1) they start at the same position; (2) their lengths can be different, but shorter one must be fully aligned with the longer one (the seed); (3) they can only have 4% mismatches (insertion, deletion, and substitution); and (4) only 1 base is allowed per insertion or deletion. Here, (3) and (4) can be adjusted by users. We allow mismatches in order to tolerate sequencing errors. To find duplicates in Illumina reads, please use cd-hit-dup (see later sections)
Basic command:
cd-hit-454 -i 454_reads -o 454_reads_95 -c 0.95 -n 10 -d 0 -M 16000 -T 8
Options:
-i input filename in fasta format, required -o output filename, required -c sequence identity threshold, default 0.98 this is a "global sequence identity" calculated as : number of identical bases in alignment divided by the full length of the shorter sequence + gaps -b band_width of alignment, default 10 -M memory limit (in MB) for the program, default 800; 0 for unlimitted; -T number of threads, default 1; with 0, all CPUs will be used -n word_length, default 10, see user's guide for choosing it -aL alignment coverage for the longer sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AL alignment coverage control for the longer sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -aS alignment coverage for the shorter sequence, default 0.0 if set to 0.9, the alignment must covers 90% of the sequence -AS alignment coverage control for the shorter sequence, default 99999999 if set to 60, and the length of the sequence is 400, then the alignment must be >= 340 (400-60) residues -B 1 or 0, default 0, by default, sequences are stored in RAM if set to 1, sequence are stored on hard drive it is recommended to use -B 1 for huge databases -g 1 or 0, default 0 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -D max size per indel, default 1 -match matching score, default 2 -mismatch mismatching score, default -1 -gap gap opening score, default -3 -gap-ext gap extension score, default -1 -bak write backup cluster file (1 or 0, default 0)
Multi-threaded cd-hit programs were implemented with OpenMP. Option "-T n" will enable cd-hit to run in parallel in a single multi-core computer. The default value of n is 1 (single thread). "-T 0" will use all the cores in that computer. We have run cd-hit on 4-core, 8-core to 16-core computers and have observed a great speedup.
CD-HIT-PARA is no longer supported, since the multi-threaded cd-hit become available.
CD-HIT-PARA is a script that runs cd-hit, cd-hit-est in a parallel mode. It splits the input database; runs cd-hit or cd-hit-est in parallel on a computer cluster; and finally merges the outputs into a single file. You can run it as you run cd-hit or cd-hit-est. The input is a protein or DNA/RNA dataset in fasta format and the output are two files: a fasta file of representative sequences and a text file of list of clusters.
There are two ways to run jobs on a cluster: by ssh to a remote computer and by queuing system (PBS and SGE are implemented). In any case, you should have a shared file system, the path to your working directory must be same on all the remote computers.
This script can also be used if you are clustering a very large database and your computer doesn't have enough RAM. In that case, all the divided jobs will still run on a single computer.
Implementation (see figure below)
- divide input db into many small dbs in decreasing length
- clusters the 1st db by cd-hit
- run cd-hit-2d for other dbs against 1st db
- repeat cd-hit and cd-hit-2d runs till done
- Combine the results
Basic command and options:
cd-hit-para.pl -i nr90 -o nr60 -c 0.6 -n 4 --B hosts --S 64 --B hosts is a file with available hostnames --S 64 is the number to split input db into, this number should be several times the number of hosts --P program, "cd-hit" or "cd-hit-est", default "cd-hit" --B filename of list of hosts, required unless -Q or -L option is supplied --L number of cpus on local computer, default 0 when you are not running it over a cluster, you can use this option to divide a big clustering jobs into small pieces, I suggest you just use "--L 1" unless you have enough RAM for each cpu --S Number of segments to split input DB into, default 64 --Q number of jobs to submit to queue queuing system, default 0 by default, the program use ssh mode to submit remote jobs --T type of queuing system, "PBS", "SGE" are supported, default PBS --R restart file, used after a crash of run
CD-HIT-2D-PARA is no longer supported, since the multi-threaded cd-hit become available.
CD-HIT-2D-PARA is a script that runs cd-hit-2d, cd-hit-est-2d in a parallel mode. It splits the input databases; runs cd-hit-2d or cd-hit-est-2d in parallel on a computer cluster; and finally merges the outputs into a single file. You can run it as you run cd-hit-2d or cd-hit-est-2d. The input is a protein or DNA/RAN dataset in fasta format and the output are two files: a fasta file of representative sequences and a text file of list of clusters.
Basic command:
cd-hit-para.pl -i nr -i2 swissprot -o swissprot_vs_nr -c 0.6 -n 4 --Q 20 -T "SGE" --S 2 --S2 20 --P program, "cd-hit-2d" or "cd-hit-est-2d", default "cd-hit-2d" --B filename of list of hosts, requred unless -Q or -L option is supplied --L number of cpus on local computer, default 0 when you are not running it over a cluster, you can use this option to divide a big clustering jobs into small pieces, I suggest you just use "--L 1" unless you have enough RAM for each cpu --S Number of segments to split 1st db into, default 2 --S2 Number of segments to split 2nd db into, default 8 --Q number of jobs to submit to queue queuing system, default 0 by default, the program use ssh mode to submit remote jobs --T type of queuing system, "PBS", "SGE" are supported, default PBS --R restart file, used after a crash of run -h print this help
It is easy to make incremental update with cd-hit /cd-hit-2d. For example:
- nr is the nr database of last month
- month is the new sequences of nr of this month
cd-hit -i nr -o nr90 -c 0.9 -n 5 -d 0 -M 16000 -T 16
This month, you can run incremental clustering
cd-hit-2d -i nr90 -i2 month -o month-new -c 0.9 -n 5 -d 0 -M 16000 -T 16 cd-hit -i month-new -o month90 -c 0.9 -n 5 -d 0 -M 16000 -T 16 cat month90 >> nr90 clstr_merge.pl nr90.clstr month-new.clstr > temp.clstr cat temp.clstr month90.clstr > this_month_nr90.clstr
This approach is much faster than running from scratch. It also preserves stable cluster structure.
With multiple-step, iterated runs of CD-HIT, you perform a clustering in a neighbor-joining method, which generates a hierarchical structure. The third step use psi-cd-hit, please see psi-cd-hit section for details.
This way is faster than one-step clustering. It can also be more accurate.
There is a problem with one-step clustering. Two very similar sequences A and B may be clustered into different clusters. For example, let the clustering threshold to be 60%, IAB (identity of AB) = 95%, IAC ≥ 60%, but IBC < 60%. If C was first selected a cluster representative, then A will be in cluster “C”, but “B” will not, resulting near identical AB to be in different clusters. Hierarchical clustering will reduce this problem.
Commands:
cd-hit -i nr -o nr80 -c 0.8 -n 5 -d 0 -M 16000 -T 16 this generate nr80 and nr80.clstr cd-hit -i nr80 -o nr60 -c 0.6 -n 4 -d 0 -M 16000 -T 16 this use nr80 to generate nr60 and nr60.clstr psi-cd-hit.pl -i nr60 -o nr30 -c 0.3 this use nr60 to generate nr30 and nr30.clstr clstr_rev.pl nr80.clstr nr60.clstr > nr80-60.clstr nr60.clstr only lists sequences from nr80, script clstr_rev.pl add the original sequences from nr but not in nr80 into the output file nr80-60.clstr clstr_rev.pl nr80-60.clstr nr30.clstr > nr80-60-30.clstr nr30.clstr only lists sequences from nr60, script clstr_rev.pl add the original sequences into file nr80-60-30.clstr
CD-HIT AuxTools is a set of auxiliary programs that can be used to assist the analysis of the next generation sequencing data. It currently includes programs for removing read duplicates, finding pairs of overlapping reads or joining pair-end reads etc.
cd-hit-dup is a simple tool for removing duplicates from sequencing reads, with optional step to detect and remove chimeric reads. When two files of paired end reads are used as inputs, each pair of reads will be concatenated into a single one. A number of options are provided to tune how the duplicates are removed. Running the program without arguments should print out the list of available options, as the following:
Usage:
cd-hit-dup -i input.fa -o output.fa [other options] (for single reads FASTQ) cd-hit-dup -i input.fq -o output.fq [other options] (for single reads FASTA) cd-hit-dup -i R1.fq -i2 R2.fq -o output-R1.fq -o2 output-R2.fq [other options] (for PE reads FASTQ) cd-hit-dup -i R1.fa -i2 R2.fa -o output-R1.fa -o2 output-R2.fa [other options] (for PE reads FASTA)
Options: -i Input file (FASTQ or FASTA); -i2 Second input file (FASTQ or FASTA); -o Output file; -o2 Output file for R2; -d Description length (default 0, truncate at the first whitespace character) -u Length of prefix to be used in the analysis (default 0, for full/maximum length); -m Match length (true/false, default true); -e Maximum number/percent of mismatches allowed; -f Filter out chimeric clusters (true/false, default false); -s Minimum length of common sequence shared between a chimeric read and each of its parents (default 30, minimum 20); -a Abundance cutoff (default 1 without chimeric filtering, 2 with chimeric filtering); -b Abundance ratio between a parent read and a chimeric read (default 1); -p Dissimilarity control for chimeric filtering (default 1);
Option details
-u Length of prefix to be used in the analysis (default 0, for full/maximum length);
For pair-end inputs, the program will take part (whole or prefix) of the first end and part (whole or prefix) of the second read, and join them together to form a single read to do the analysis. A positive value of this option specifies the length of the prefix to be taken from each read. If a read is shorter than this length, letter 'N's will be appended to the read to make up for the length. When this option is not used or is used with a non-positive value, the program will use the length of the longest read as the value of this option.
For single input analysis, only a positive value of this option will be effective. It also allows the program to use only the prefix up to the specified length of each read to do the analysis. In case that a read is shorter than this length, no 'N' is appended to the read since it is not necessary.
-m Match length (true/false, default true);
"-m" specifies whether the lengths of two reads should be exactly the same to be considered as duplicates.
-e Maximum number/percent of mismatches allowed;
Maximum number/percent of mismatches can be specified to control the similarity between two reads for duplicate and chimeric detection. For duplicate detection, any two reads with number of mismatches no greater than the specified value are considered to be duplicates. For chimeric detection, this option control how similar a read should be to either of its parents.
-f Filter out chimeric clusters (true/false, default false);
This option specifies whether or not to carry out an additional step to filter out chimeric clusters.
-s Minimum length of common sequence shared between a chimeric read and each of its parents (default 30, minimum 20);
A read or cluster representative is considered as a potential chimeric only if it shares at least the number of bases specified by this option with either of its parents. This option is effective only if the option is set to true for filtering chimeric clusters.
-a Abundance cutoff (default 1 without chimeric filtering, 2 with chimeric filtering);
Each read is associated with an abundance number, which is the number of duplicates for the read. cd-hit-dup always assumes the input contains duplicates and perform the duplicate detection step. If no duplicate is found, the input is assumed to have duplicates remove in advance, and then, the program will try to obtain the abundance information from the descriptions of the reads, it interprets the number following "_abundance_" as the abundance number.
The abundance cutoff is mainly used for chimeric filtering to skip chimeric checking on reads with abundance below this cutoff.
-b Abundance ratio between a parent read and a chimeric read (default 1);
This option specifies the abundance ratio between a parent read and a chimeric read. So for a read to be chimeric, either of its parents must have abundance at least as high as the ratio times the abundance of the chimeric read.
-p Dissimilarity control for chimeric filtering (default 1);
Internally dissimilarity is measured by percent of mismatches with ungapped alignments. By default the percentage cutoff is set to 0.01 (one percent). This option specifies a multiplier to this percentage cutoff. A higher value will increase the dissimilarity thresholds in chimeric filtering.
Output files
cd-hit-dup will output three or four files. Two of them are the same as the output files of CD-HIT:
one (named exactly the same as the file name specified by the "-o" option) is the cluster (or duplicate) representatives, the other is the clustering file (xxx.clstr) relating each duplicate
to its representative. For paired end reads, another file by the "-o2" option is the cluster representatives for R2 reads.
The last file (xxx2.clstr) contains the chimeric clusters.
In this file, the description for each chimeric cluster contains cluster ids of its parent clusters
from the clustering file xxx.clstr.
Duplicate Detection
Remove duplicates using default parameters:
cd-hit-dup -i input.fa -o output
By default, only reads that are identical are considered as duplicates. If "-m" is set to false, duplicates will be allowed to have different length, but the longer ones must have a prefix that is identical to the shorter ones.
cd-hit-dup -i input.fa -o output -u 50
This only compare the first 50 bases of all sequences, considering that in Illumina reads, sequence quality are better at the beginning of the reads.
Remove duplicates with a few mismatches:
cd-hit-dup -i input.fa -o output -e 2 cd-hit-dup -i input.fa -o output -e 0.01
The former will allow each duplicate read to have up to 2 mismatches when aligned to its representative; and the later will allow up to one percent mismatches.
Remove duplicates from paired end reads:
cd-hit-dup -i pair-end1.fa -i2 pair-end2.fa -o output -o2 output-R2
Each read from "pair-end1.fa" and "pair-end2.fa" will be joint to form a single read to detect duplicates. If they all are of the same length, the full length of each ends will be used in forming the single read; otherwise, the default value of option "-u" will be used to determine how the single read is created.
cd-hit-dup -i pair-end1.fa -i2 pair-end2.fa -o output -o2 output-R2 -u 50
This only consider the first 50 bases from both R1 and R2 reads.
Remove duplicates from paired end reads with control on how the paired end are jointed:
cd-hit-dup -i pair-end1.fa -i2 pair-end2.fa -o output -o2 output-R2 -u 100
With explicit "-u" options, any reads shorter than 100 will be padded with 'N's, and the longer ones will be cut down to 100 base long. Then each pair of the 100 base long reads will be jointed to form a single 200 base long read.
Chimeric Filtering
cd-hit-dup offers a very efficient way to detect chimeric reads. The basic idea is to find two parent
reads whose cross-over is sufficient similar to the chimeric read, while each single parent is
sufficiently dissimilar to it.
Such dissimilarity is measured by the percent of mismatches for no-gapped alignments. For a given percentage "p" (from option "-p"), a chimeric read must share at least "p" percent mismatches with any other single read, namely, it much be sufficiently dissimilar to any single read.
For more robust detection of chimeric reads, a background percentage "p_bg" is calculated as the mismatch percentage shared between the candidate chimeric read and the single read that is most similar to the candidate. If "p_bg" is greater than "1.5*p", "1.5*p" will be used as "p_bg" instead.
For a read to be classified as chimeric read, there must exist two reads/parents such that, the leading part of the read is sufficiently similar to one parent, and the rest is sufficiently similar to the other parent, with at most "p+p_bg" percent of mismatches in each part. And the crossover between the two parents must share at most "p_bg" mismatches with the chimeric read.
Chimeric filtering with default parameters:
cd-hit-dup -i input.fa -o output -f true
Chimeric filtering with specified similarity level:
cd-hit-dup -i input.fa -o output -f true -p 1.5
Chimeric filtering with specified abundance difference:
cd-hit-dup -i input.fa -o output -f true -a 2
which means each parent of a chimeric read must be a least as twice abundant as the chimeric read.
Chimeric filtering will produce a cluster file named like "xxx2.clstr", in which each cluster entry is a chimeric read/cluster. For example,
...... >Cluster 4 chimeric_parent1=2,chimeric_parent2=8 0 256nt, >FV9NWLF01CRIR3_abundance_23... * >Cluster 5 chimeric_parent1=2,chimeric_parent2=0 0 250nt, >FV9NWLF01B4TBX_abundance_21... * ......here "Cluster 5" contains a chimeric read "FV9NWLF01B4TBX", whose parents are identified by cluster numbers "2" and "0" from the associated "xxx.clstr" file,
>Cluster 0 0 252nt, >FV9NWLF01ANLX2_abundance_2239... * >Cluster 1 0 246nt, >FV9NWLF01C3KOB_abundance_1465... * >Cluster 2 0 260nt, >FV9NWLF01AQOWA_abundance_1284... * ......So the parent reads of the chimeric read "FV9NWLF01B4TBX" are "FV9NWLF01AQOWA" and "FV9NWLF01ANLX2".
cd-hit-lap is program for extracting pairs of overlapping reads by clustering based on tail-head overlaps (with perfect matching). The basic clustering strategy is the same as that in standard CD-HIT programs. In this program, each read is clustered as either a "representative" or a "redundant" read. For each "redundant" read, it must have a prefix that is identical a suffix of its representative read.
The options of this program can be obtained by running it it without any arguments:
cd-hit-lap -i input -o output -i Input file; -o Output file; -m Minimum length of overlapping part (default 20); -p Minimum percentage of overlapping part (default 0, any percentage); -d Description length (default 0, truncate at the first whitespace character) -s Random number seed for shuffling (default 0, no shuffling; shuffled before sorting by length); -stdout Standard output type (default "log", other options "rep", "clstr");
The two options "-m" and "-p" can be used to control the minimum overlap that is required to classify them as overlapping reads. Each pair of overlapping reads must have overlap length no less than the threshold specified by "-m", and must also not be less than the length threshold computed from the "-p" option.
Since the overlapping reads are searched using a greedy strategy, so different sortings of reads may lead to different result. So it is advisable to run the program multiple times with read shuffling by different random number seeds, and then collect and merge the results.
Sometimes it may be more convenient to pipe the results of this program as stdout directly to the stdin of other programs, to do this, the option "-stdout" can be used to choose which type ("log" for program console information, "rep" for representative reads in FASTA or FASTQ format, "clstr" for the clustering output in CD-HIT format) of results to be writen to the stdout.
The output format of this program is the same as the standard CD-HIT. In the .clstr file, the alignment positions indicate how the reads are overlapped. For example,
>Cluster 0 0 75nt, >1_lane2_624... * 1 75nt, >1_lane2_7169... at 1:65:11:75/+/100.00% 2 75nt, >1_lane2_36713... at 69:1:1:69/-/100.00% 3 75nt, >1_lane2_141482... at 1:56:20:75/+/100.00%The cluster member #0 in cluster #0 is the representative of the cluster, and it overlaps with each of the other members in the cluster. For cluster member #1, "1:65:11:75/+" tells that the first 65 bases of member #1 overlaps with the last 65 bases of member #0; "69:1:1:69/-" indicates that the last 69 bases of member #2 overlaps with the first 69 bases of member #0.
read-linker is a very simple program to concatenate pair-end reads into single ones. It support the following options:
read-linker -1 R1 -2 R2 -o output -1 file Input file, first end; -2 file Input file, second end; -o file Output file; -l number Minimum overlapping length (default 10); -e number Maximum number of errors (mismatches, default 1);
Only the pairs of reads that share at least a minimum overlapping length with mismatched no more than the maximum number of errors, are jointed to form a single read.
The lowest threshold of CD-HIT is around 40%, in many applications, we need a much lower threshold, like 25%. Also CD-HIT-EST can not handle very long sequences (e.g. genomes, scaffolds).
PSI-CD-HIT clusters proteins at very low threshold, it also cluster long DNA sequences, through blastp, blastn and metablast. PSI-cd-hit is a Perl script, which runs similar incremental algorithm like CD-HIT, but using BLAST to calculate similarities. Below are the procedures of PSI-CD-HIT:
- Sort sequences by decreasing length
- First one is the first representative
- Using 1st one blast all remaining sequences, pick up its neighbors that meet the clustering threshold
- Repeat until done
please download either legacy BLAST or BLAST+ and install the executables in your $PATH. The programs required by psi-cd-hit.pl are blastall, megablast, blastpgp and formatdb for legacy blast, and blastp, blastn, psiblast and makeblastdb for blast+.
Basic command:
psi-cd-hit.pl -i nr60 -o nr30 -c 0.3 input/output: -i in_dbname, required -o out_dbname, required -l length_of_throw_away_sequences, default 10
thresholds: -c clustering threshold (sequence identity), default 0.3 -ce clustering threshold (blast expect), default -1, it means by default it doesn't use expect threshold, but with positive value, the program cluster seqs if similarities meet either identity threshold or expect threshold -G (1/0) use global identity? default 1 two sequences Long (i.e. representative) and Short (redunant) may have multiple alignment fragments (i.e. HSPs), see: seq1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Long sequence |||||||||||||||||| ///////////// i.e. representative |||||||||||||||||| ///////////// sequence ||||||||HSP 1 |||| ////HSP 2 /// |||||||||||||||||| ///////////// |||||||||||||||||| ///////////// seq2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Short sequence << length 1 >> << len 2 >> i.e. redundant <<<<<<<<<<<< length of short sequence >>>>>>>>>>>>>> sequence
total identical letters from all co-linear and non-overlapping HSPs Glogal identity = ------------------------------------------------------------------- length of short sequence Local identity = identity of the top high score HSP if you prefer to use -G 0, it is suggested that you also use -aS, -aL, such as -aS 0.8, to prevent very short matches. -aL alignment coverage for the longer sequence, default 0 if set to 0.9, the alignment must covers 90% of the sequence -aS alignment coverage for the shorter sequence, default 0 if set to 0.9, the alignment must covers 90% of the sequence -g (1/0), default 1 by cd-hit's default algorithm, a sequence is clustered to the first cluster that meet the threshold (fast cluster). If set to 1, the program will cluster it into the most similar cluster that meet the threshold (accurate but slow mode) but either 1 or 0 won't change the representatives of final clusters -circle (1/0), default 0 when set to 1, treat sequences as circular sequence. bacterial genomes, plasmids are circular, but their genome coordinate maybe arbitary, the 2 HSPs below will be treated as non co-linear with -circle 0 the 2 HSPs below will be treated as co-linear with -circle 1 -------------circle----------- | | seq1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx genome / plasmid 1 \\\\\\\\ ///////////// \\\\\\\\ ///////////// HSP 2 -> ////HSP 1 /// <-HSP 2 ///////////// \\\\\\\\ ///////////// \\\\\\\\ seq2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx genome / plasmid 2 | | -----------circle-------------- -sl, length of very long sequences to be skipped, default 0, e.g. -sl 5000 means sequences longer than 5000 aa will be treated as singleton clusters without clustering, to save time, especially when there is -aL option in place, very long sequences will not be clustered anyway. -sl 0 means no skipping program: -prog (blastp, blastn, megablast, psiblast), default blastp -s blast search para, default "-seg yes -evalue 0.000001 -max_target_seqs 100000" -bs (1/0) default 1 pipe blast results from into parser instead of save in hard drive (save time)
compute: -exec (qsub, local) default local this program writes a shell script to run blast, this script is either performed locally by sh or remotely by qsub with qsub, you can use PBS, SGE etc -host number of qsub jobs, default 1 -para number of parallel blast job per qsub job (each blast can use multi cores), default 1 one qsub script can run multiple blast jobs -blp number of threads per blast job, default 1 number of threads per blast job (option -blp) X number of parallel blast job per qsub job (option -para) should <= the number of cores in your computer if your computer grid has 32 cores / node, do either of the followings -para 4 -blp 8 -para 8 -blp 4 preferred -para 16 -blp 2 -para 32 -blp 1 -bat number of sequences a blast job to process, 100 -shf a filename for add local settings into the job shell script for example, when you run PBS jobs, you can add quene name etc in this file and this script will add them into the job shell script e.g. template file for PBS #!/bin/sh #PBS -v PATH #PBS -l walltime=8:00:00 #PBS -q job_queue.q
e.g. template file for SGE or OGE #!/bin/sh #$ -v PATH #$ -q job_queue.q #$ -V #$ -pe orte 8
job: -rs steps of save restart file and clustering output, default 20000 everytime after process 5000 sequences, program write a restart file and current clustering information -restart restart file, readin a restart file if program crash, stoped, termitated, you can restart it by add a option "-restart sth.restart" -rf steps of re format blast database, default 50000 if program clustered 200,000 seqs, it remove them from seq pool, and re format blast db to save time -J job, job_file, exe specific jobs like parse blast outonly DO NOT use it, it is only used by this program itself -k (1/0) keep blast raw output file, default 0
-P path to blast executables
First, we use cd-hit to cluster the input down to 60% identity
cd-hit -i db -o db_90 -c 0.9 -n 5 -g 1 -G 0 -aS 0.8 -d 0 -p 1 -T 16 -M 0 > db_90.log cd-hit -i db_90 -o db_60 -c 0.6 -n 4 -g 1 -G 0 -aS 0.8 -d 0 -p 1 -T 16 -M 0 > db_60.log
Cluster on a single computer
./psi-cd-hit.pl -i db_60 -o db_30 -c 0.3 -ce 1e-6 -aS 0.8 -G 0 -g 1 -exec local -para 8 -blp 4 clstr_rev.pl db_90.clstr db_60.clstr > db90-60.clstr clstr_rev.pl db90-60.clstr db_30.clstr > db90-60-30.clstr Here, -ce 1e-6 and -c 0.3 means cutoff at either 30% identity or 1e-6 e.value -G 0 means global identity -aS 0.8 means that alignment must cover 80% of shorter (redundant) sequence -g 1, slow but accurate mode, allowing sequences to be grouped to its most similar cluster -para 8, run 8 blast jobs -blp 4, use 4 threads for each blast job -clstr_rev.pl will combined all the cd-hit runs, see Hierarchical clustering
Cluster on a computer cluster (with qsub)
./psi-cd-hit.pl -i db_60 -o db_30 -c 0.3 -ce 1e-6 -aS 0.8 -G 0 -g 1 -exec qsub -host 8 -para 8 -blp 4 -shf qsub_sh_template clstr_rev.pl db_90.clstr db_60.clstr > db90-60.clstr clstr_rev.pl db90-60.clstr db_30.clstr > db90-60-30.clstr
Restart:
./psi-cd-hit.pl -i db_60 -o db_30 -c 0.3 -ce 1e-6 -aS 0.8 -G 0 -g 1 -exec local -para 8 -blp 4 -restart db_30.restart ./psi-cd-hit.pl -i db_60 -o db_30 -c 0.3 -ce 1e-6 -aS 0.8 -G 0 -g 1 -exec qsub -host 8 -para 8 -blp 4 -shf qsub_sh_template -restart db_30.restart
In case of program crash, it restart from where it stops without re-running blast searches.
./psi-cd-hit.pl -i db.fna -o db90.fna -c 0.9 -G 1 -g 1 -prog megablast -s "-F F -e 0.000001 -b 100000 -v 100000" -exec local -para 8 -blp 4 ./psi-cd-hit.pl -i db.fna -o db90.fna -c 0.9 -G 1 -g 1 -prog blastn -circle 1 -exec local -para 8 -blp 4 Here, First example uses megablast Second example uses blastn -circle 1 means consider circular genome (see psi-cd-hit options above)
Both the executable binary program cd-hit-div and the perl script divide a FASTA file into pieces. The difference is that cd-hit-div sorts the sequences before dividing them while the perl script does not.
Commands:
cd-hit-div -i input -o output -div n cd-hit-div.pl input output n
where "n" is the number of output files. The output files will be named as output-0, output-1 etc.
This is a script to print out distributions of clusters & sequences.
Commands:
plot_len.pl input.clstr \ 1,2-4,5-9,10-19,20-49,50-99,100-299,500-99999 \ 10-59,60-149,150-499,500-1999,2000-999999
where
2nd line are sizes of cluster 3rd line are lengths of sequences
It will print distribution of clusters and sequences :
Size # seq #clstr 10-59 60-149 150-499 500-1999 2000-up 1 266312 266312 36066 103737 103285 22727 497 2-4 208667 81131 1229 14680 44607 20006 609 5-9 156558 24198 118 2148 12026 9388 518 10-19 155387 11681 30 596 5024 5462 569 20-49 176815 6007 6 139 2212 3135 515 50-99 106955 1568 0 24 410 955 179 100-499 154209 896 0 3 124 597 172 500-up 43193 40 0 0 1 14 25 Total 1268096 391833 37449 121327 167689 62284 3084
This script sort clusters in .clstr file by length, size
Commands:
Clstr_sort_by.pl < input.clstr no > input_sort.clstr
Where, "no" means by size of the cluster
This script sort sequences within clusters in .clstr file by length, name, etc.
Commands:
Clstr_sort_prot_by.pl input.clstr id > input_sort.clstr
Where, "no" means by id of sequences
It merges two or more .clstr files. The cluster orders need to be identical.
Commands:
cd-hit-2d -i db1 -i2 db2 -o db2new -c 0.9 -n 5 cd-hit-2d -i db1 -i2 db3 -o db3new -c 0.9 -n 5 clstr_merge.pl db2new.clstr db3new.clstr > db23new.clstr
It merges two or more .clstr files. The cluster orders do not have to be identical.
Commands:
cd-hit-2d -i db1 -i2 db2 -o db2new -c 0.9 -n 5 cd-hit-2d -i db1 -i2 db3 -o db3new -c 0.9 -n 5 clstr_merge_noorder.pl db2new.clstr db3new.clstr > db23new.clstr
It renumbers clusters and sequences within clusters in .clstr file after merge or other operations
Commands:
Clstr_renumber.pl input.clstr > input_ren.clstr
It combines a .clstr file with its parent .clstr file
Commands:
cd-hit -i nr -o nr90 -c 0.9 -n 5 cd-hit -i nr90 -o nr60 -c 0.6 -n 4 clstr_rev.pl nr90.clstr nr60.clstr > nr60_from90.clstr psi-cd-hit -i nr60 -o nr30 -c 0.3 clstr_rev.pl nr60_from90.clstr nr30.clstr > nr30_from90.clstr
This script reads the .clstr file, it generates a separate fasta file for each cluster over certain size and saves it in designated subdirectory. To run this script correctly, "-d 0" option should be used in the cd-hit run and it is better to use "-g 1" in the cd-hit run to get accurate clustering results. For example,
Commands:
cd-hit -i db -o dbout -c 0.6 -n 4 -d 0 -g 1 make_multi_seq.pl seq_db dbout.clstr multi-seq 20
will generate fasta files in "multi-seq" directory for clusters with more than 20 member sequences. Files will be named as "clusterN" where "N" is serial number of a cluster.
This script converts a cluster file or combines multiple cluster files from a hierarchical cd-hit run to xml format. The output is sorted by sequence length (default) or cluster size. The input cluster files must be in the order of being generated, that is, the cluster file with higher identity cutoff comes first.
Command:
clstr2xml.pl [-len|-size] input1.clstr [input2.clstr input3.clstr ...]