-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprocess_snapshot.py
147 lines (114 loc) · 4.21 KB
/
process_snapshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pickle
import os
import h5py
import sys
import numpy as np
import torch
import open3d as o3d
from lib.utils.body_model.body_model import BodyModel
import cv2
import tqdm
def read_pickle(pkl_path):
with open(pkl_path, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
return u.load()
def get_KRTD(camera):
K = np.zeros([3, 3])
K[0, 0] = camera['camera_f'][0]
K[1, 1] = camera['camera_f'][1]
K[:2, 2] = camera['camera_c']
K[2, 2] = 1
R = np.eye(3)
T = np.zeros([3])
D = camera['camera_k']
return K, R, T, D
def extract_image(data_path):
data_root = os.path.dirname(data_path)
img_dir = os.path.join(data_root, 'image')
os.makedirs(img_dir, exist_ok=True)
if len(os.listdir(img_dir)) >= 200:
return
cap = cv2.VideoCapture(data_path)
ret, frame = cap.read()
i = 0
while ret:
cv2.imwrite(os.path.join(img_dir, '{}.jpg'.format(i)), frame)
ret, frame = cap.read()
i = i + 1
cap.release()
def extract_mask(masks, mask_dir):
if len(os.listdir(mask_dir)) >= len(masks):
return
for i in tqdm.tqdm(range(len(masks))):
mask = masks[i].astype(np.uint8)
# erode the mask
border = 4
kernel = np.ones((border, border), np.uint8)
mask = cv2.erode(mask.copy(), kernel)
cv2.imwrite(os.path.join(mask_dir, '{}.png'.format(i)), mask)
data_root = 'data/people_snapshot'
# videos = ['male-3-casual']
videos = os.listdir(data_root)
model_paths = [
'./data/smplx/smpl/basicmodel_f_lbs_10_207_0_v1.1.0.pkl',
'./data/smplx/smpl/basicmodel_m_lbs_10_207_0_v1.1.0.pkl'
]
for video in videos:
camera_path = os.path.join(data_root, video, 'camera.pkl')
camera = read_pickle(camera_path)
K, R, T, D = get_KRTD(camera)
# process video
video_path = os.path.join(data_root, video, video + '.mp4')
extract_image(video_path)
# process mask
mask_path = os.path.join(data_root, video, 'masks.hdf5')
masks = h5py.File(mask_path)['masks']
mask_dir = os.path.join(data_root, video, 'mask')
os.makedirs(mask_dir, exist_ok=True)
extract_mask(masks, mask_dir)
smpl_path = os.path.join(data_root, video, 'reconstructed_poses.hdf5')
smpl = h5py.File(smpl_path)
betas = smpl['betas']
pose = smpl['pose']
trans = smpl['trans']
pose = pose[len(pose) - len(masks):]
trans = trans[len(trans) - len(masks):]
# process smpl parameters
params = {'beta': np.array(betas), 'pose': pose, 'trans': trans}
params_path = os.path.join(data_root, video, 'params.npy')
np.save(params_path, params)
if 'female' in video:
model_path = model_paths[0]
else:
model_path = model_paths[1]
body_model = BodyModel(model_path=model_path)
img_dir = os.path.join(data_root, video, 'image')
num_img = len(os.listdir(img_dir))
vertices_dir = os.path.join(data_root, video, 'vertices')
os.makedirs(vertices_dir, exist_ok=True)
if len(os.listdir(vertices_dir)) < num_img:
beta_torch = torch.from_numpy(np.array(betas)[None])
for i in tqdm.tqdm(range(num_img)):
pose_torch = torch.from_numpy(np.array(pose[i])[None])
vertices, _, _, _, _ = body_model(beta_torch, pose_torch)
vertices = vertices.numpy()[0]
vertices = vertices + trans[i]
np.save(os.path.join(vertices_dir, '{}.npy'.format(i)), vertices)
big_pose = np.zeros((72, )).astype(np.float32)
angle = 30
big_pose[5] = np.deg2rad(angle)
big_pose[8] = np.deg2rad(-angle)
beta_torch = torch.from_numpy(np.array(betas)[None])
pose_torch = torch.from_numpy(big_pose[None])
vertices, _, joints, _, _ = body_model(beta_torch, pose_torch)
vertices = vertices.numpy()[0]
joints = joints.numpy()[0]
lbs_dir = os.path.join(data_root, video, 'lbs')
os.makedirs(lbs_dir, exist_ok=True)
lbs_weights = body_model.lbs_weights.numpy()
parents = body_model.kintree_table.numpy()[0]
np.save(os.path.join(lbs_dir, 'bigpose_vertices.npy'), vertices)
np.save(os.path.join(lbs_dir, 'joints.npy'), joints)
np.save(os.path.join(lbs_dir, 'weights.npy'), lbs_weights)
np.save(os.path.join(lbs_dir, 'parents.npy'), parents)