forked from nadeemlab/DeepLIIF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPostProcessSegmentationMask.py
115 lines (85 loc) · 4.96 KB
/
PostProcessSegmentationMask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os.path
import sys
import cv2
import numpy as np
import scipy.ndimage as ndi
from deepliif.postprocessing import overlay, refine, remove_cell_noise, remove_background_noise, \
remove_small_objects_from_image
def align_seg_on_image(input_image, input_mask, output_image, thresh=100, noise_objects_size=100):
seg_image = cv2.cvtColor(cv2.imread(input_mask), cv2.COLOR_BGR2RGB)
orig_image = cv2.cvtColor(cv2.imread(input_image), cv2.COLOR_BGR2RGB)
final_mask = orig_image.copy()
processed_mask = np.zeros_like(orig_image)
red = seg_image[:, :, 0]
blue = seg_image[:, :, 2]
boundary = seg_image[:, :, 1]
boundary[boundary < thresh] = 0
positive_cells = np.zeros((seg_image.shape[0], seg_image.shape[1]), dtype=np.uint8)
negative_cells = np.zeros((seg_image.shape[0], seg_image.shape[1]), dtype=np.uint8)
positive_cells[red > thresh] = 255
positive_cells[boundary > thresh] = 0
negative_cells[blue > thresh] = 255
negative_cells[boundary > thresh] = 0
negative_cells[red >= blue] = 0
positive_cells[blue > red] = 0
positive_cells = cv2.morphologyEx(positive_cells, cv2.MORPH_DILATE, kernel=np.ones((2, 2)))
negative_cells = cv2.morphologyEx(negative_cells, cv2.MORPH_DILATE, kernel=np.ones((2, 2)))
negative_cells = remove_background_noise(negative_cells, boundary)
positive_cells = remove_background_noise(positive_cells, boundary)
negative_cells, positive_cells = remove_cell_noise(negative_cells, positive_cells)
positive_cells, negative_cells = remove_cell_noise(positive_cells, negative_cells)
negative_cells = remove_small_objects_from_image(negative_cells, noise_objects_size)
negative_cells = ndi.binary_fill_holes(negative_cells).astype(np.uint8)
positive_cells = remove_small_objects_from_image(positive_cells, noise_objects_size)
positive_cells = ndi.binary_fill_holes(positive_cells).astype(np.uint8)
contours, hierarchy = cv2.findContours(positive_cells,
cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(final_mask, contours, -1, (255, 0, 0), 2)
contours, hierarchy = cv2.findContours(negative_cells,
cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(final_mask, contours, -1, (0, 0, 255), 2)
processed_mask[positive_cells > 0] = (0, 0, 255)
processed_mask[negative_cells > 0] = (255, 0, 0)
contours, hierarchy = cv2.findContours(positive_cells,
cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(processed_mask, contours, -1, (0, 255, 0), 2)
contours, hierarchy = cv2.findContours(negative_cells,
cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(processed_mask, contours, -1, (0, 255, 0), 2)
cv2.imwrite(output_image, cv2.cvtColor(final_mask, cv2.COLOR_BGR2RGB))
cv2.imwrite(output_image.replace('Overlaid', 'Refined'), processed_mask)
def align_seg_on_image2(input_image, input_mask, output_image, thresh=100, noise_objects_size=20):
seg_image = cv2.cvtColor(cv2.imread(input_mask), cv2.COLOR_BGR2RGB)
orig_image = cv2.cvtColor(cv2.imread(input_image), cv2.COLOR_BGR2RGB)
overlaid_mask = overlay(orig_image, seg_image, thresh, noise_objects_size)
cv2.imwrite(output_image, overlaid_mask)
refined_mask = refine(orig_image, seg_image, thresh, noise_objects_size)
cv2.imwrite(output_image.replace('Overlaid', 'Refined'), refined_mask)
def post_process_segmentation_mask(input_dir, seg_thresh=100, noise_object_size=100):
images = os.listdir(input_dir)
image_extensions = ['.png', '.jpg', '.tif', '.tiff']
for img in images:
if '_fake_B_5.png' in img:
align_seg_on_image2(os.path.join(input_dir, img.replace('_fake_B_5', '_real_A')),
os.path.join(input_dir, img),
os.path.join(input_dir, img.replace('_fake_B_5', '_Seg_Overlaid_')),
thresh=seg_thresh, noise_objects_size=noise_object_size)
elif '_Seg.png' in img:
orig_img_ext = '.png'
for img_ext in image_extensions:
if os.path.exists(os.path.join(input_dir, img.replace('_Seg.png', img_ext))):
orig_img_ext = img_ext
break
align_seg_on_image2(os.path.join(input_dir, img.replace('_Seg.png', orig_img_ext)),
os.path.join(input_dir, img),
os.path.join(input_dir, img.replace('_Seg', '_SegOverlaid')),
thresh=seg_thresh, noise_objects_size=noise_object_size)
if __name__ == '__main__':
base_dir = sys.argv[1]
segmentation_thresh = 100
noise_obj_size = 20
if len(sys.argv) > 2:
segmentation_thresh = int(sys.argv[2])
if len(sys.argv) > 3:
noise_obj_size = int(sys.argv[3])
post_process_segmentation_mask(base_dir, segmentation_thresh, noise_obj_size)