forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblackjack_dqn_multi_process.py
84 lines (63 loc) · 2.53 KB
/
blackjack_dqn_multi_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
''' An example of learning a Deep-Q Agent on Blackjack with multiple processes
Note that we must use if __name__ == '__main__' for multiprocessing
'''
import tensorflow as tf
import os
import rlcard
from rlcard.agents import DQNAgent
from rlcard.utils import set_global_seed, tournament
from rlcard.utils import Logger
def main():
# Make environment
env = rlcard.make('blackjack', config={'env_num': 4, 'seed': 0})
eval_env = rlcard.make('blackjack', config={'env_num': 4, 'seed': 0})
# Set the iterations numbers and how frequently we evaluate performance
evaluate_every = 100
evaluate_num = 10000
iteration_num = 100000
# The intial memory size
memory_init_size = 100
# Train the agent every X steps
train_every = 1
# The paths for saving the logs and learning curves
log_dir = './experiments/blackjack_dqn_result/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Initialize a global step
global_step = tf.Variable(0, name='global_step', trainable=False)
# Set up the agents
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_init_size=memory_init_size,
train_every=train_every,
state_shape=env.state_shape,
mlp_layers=[10,10])
env.set_agents([agent])
eval_env.set_agents([agent])
# Initialize global variables
sess.run(tf.global_variables_initializer())
# Initialize a Logger to plot the learning curve
logger = Logger(log_dir)
for iteration in range(iteration_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=True)
# Feed transitions into agent memory, and train the agent
for ts in trajectories[0]:
agent.feed(ts)
# Evaluate the performance. Play with random agents.
if iteration % evaluate_every == 0:
logger.log_performance(env.timestep, tournament(eval_env, evaluate_num)[0])
# Close files in the logger
logger.close_files()
# Plot the learning curve
logger.plot('DQN')
# Save model
save_dir = 'models/blackjack_dqn'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
saver = tf.train.Saver()
saver.save(sess, os.path.join(save_dir, 'model'))
if __name__ == '__main__':
main()