forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgin_rummy_nfsp.py
121 lines (96 loc) · 3.92 KB
/
gin_rummy_nfsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
'''
File name: rlcard.examples.gin_rummy_nfsp.py
Author: William Hale
Date created: 2/12/2020
An example of learning a NFSP Agent on GinRummy
'''
import tensorflow as tf
import os
import rlcard
from rlcard.agents import NFSPAgent
from rlcard.agents import RandomAgent
from rlcard.utils import set_global_seed, tournament
from rlcard.utils import Logger
# Make environment
env = rlcard.make('gin-rummy', config={'seed': 0})
eval_env = rlcard.make('gin-rummy', config={'seed': 0})
env.game.settings.print_settings()
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 100
evaluate_num = 100 # mahjong has 1000
episode_num = 1000 # mahjong has 100000
# The initial memory size
memory_init_size = 1000
# Train the agent every X steps
train_every = 64
# The paths for saving the logs and learning curves
log_dir = './experiments/gin_rummy_nfsp_result/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Initialize a global step
global_step = tf.Variable(0, name='global_step', trainable=False)
# Set up the agents
agents = []
for i in range(env.player_num):
agent = NFSPAgent(sess,
scope='nfsp' + str(i),
action_num=env.action_num,
state_shape=env.state_shape,
hidden_layers_sizes=[512, 1024, 2048, 1024, 512],
anticipatory_param=0.5,
batch_size=256,
rl_learning_rate=0.00005,
sl_learning_rate=0.00001,
min_buffer_size_to_learn=memory_init_size,
q_replay_memory_size=int(1e5),
q_replay_memory_init_size=memory_init_size,
train_every = train_every,
q_train_every=train_every,
q_batch_size=256,
q_mlp_layers=[512, 1024, 2048, 1024, 512])
agents.append(agent)
random_agent = RandomAgent(action_num=eval_env.action_num)
env.set_agents(agents)
eval_env.set_agents([agents[0], random_agent])
# Initialize global variables
sess.run(tf.global_variables_initializer())
# Init a Logger to plot the learning curve
logger = Logger(log_dir)
for episode in range(episode_num):
# First sample a policy for the episode
for agent in agents:
agent.sample_episode_policy()
# Generate data from the environment
trajectories, _ = env.run(is_training=True)
# Feed transitions into agent memory, and train the agent
for i in range(env.player_num):
for ts in trajectories[i]:
agents[i].feed(ts)
# extra logging
if episode % evaluate_every == 0:
reward = 0
reward2 = 0
eval_episode = 0
for eval_episode in range(evaluate_num):
_, payoffs = eval_env.run(is_training=False)
reward += payoffs[0]
reward2 += payoffs[1]
logger.log("\n\n########## Evaluation {} ##########".format(episode))
reward_text = "{}".format(float(reward)/evaluate_num)
reward2_text = "{}".format(float(reward2) / evaluate_num)
info = "Timestep: {} Average reward is {}, reward2 is {}".format(env.timestep, reward_text, reward2_text)
logger.log(info)
# Evaluate the performance. Play with random agents.
if episode % evaluate_every == 0:
logger.log_performance(env.timestep, tournament(eval_env, evaluate_num)[0])
# Close files in the logger
logger.close_files()
# Plot the learning curve
logger.plot('NFSP')
# Save model
save_dir = 'models/gin_rummy_nfsp'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
saver = tf.train.Saver()
saver.save(sess, os.path.join(save_dir, 'model'))