forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuno_random.py
30 lines (23 loc) · 890 Bytes
/
uno_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
''' A toy example of playing Uno with random agents
'''
import rlcard
from rlcard.agents import RandomAgent
from rlcard.utils import set_global_seed
# Make environment
env = rlcard.make('uno', config={'seed': 0})
episode_num = 2
# Set a global seed
set_global_seed(0)
# Set up agents
agent_0 = RandomAgent(action_num=env.action_num)
agent_1 = RandomAgent(action_num=env.action_num)
agent_2 = RandomAgent(action_num=env.action_num)
agent_3 = RandomAgent(action_num=env.action_num)
env.set_agents([agent_0, agent_1, agent_2, agent_3])
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=False)
# Print out the trajectories
print('\nEpisode {}'.format(episode))
for ts in trajectories[0]:
print('State: {}, Action: {}, Reward: {}, Next State: {}, Done: {}'.format(ts[0], ts[1], ts[2], ts[3], ts[4]))