-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
135 lines (98 loc) · 4.18 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""
Description: This fuction reads the information stored in the song data in JSON format row by row and saves data into two datasets: song_data and artist_data
Arguments:
cur: the cursor object.
filepath: song data file path.
Returns:
None
"""
# This fuction reads the information of song_data stored in a JSON files row by row and saves data into two datasets: song_data and artist_data
# Arguments:
# cursor: Dabase cursor
#filepath: location of file in dir
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = df[['song_id','title','artist_id','year','duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id','artist_name','artist_location','artist_latitude','artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
Description: This fuction reads the information stored in log data in JSON format row by row and saves data into two datasets: time_data and user_data
Arguments:
cur: the cursor object.
filepath: log data file path.
Returns:
None
""""
# This fuction reads the information of song_data stored in a JSON files row by row and saves data into two datasets: time_data and user_data
# Arguments:
# cursor: Dabase cursor
#filepath: location of file in dir
# open log file
df= pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df.query('page == "NextSong"')
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'],unit='ms')
# insert time data records
time_data = list(zip(list(t),list(t.dt.hour),list(t.dt.day),list(t.dt.weekofyear),list(t.dt.month),list(t.dt.year),list(t.dt.dayofweek) ))
column_labels =['timestamp','hour','day','week','month','year','weekday']
time_df = pd.DataFrame(data=time_data,columns = column_labels)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId','firstName','lastName','gender','level']]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (index,pd.to_datetime(row['ts'],unit='ms'),row.userId,row.level, songid, artistid,row.sessionId,row.location,row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Description: This fuction gets all the matching files from the directory
Arguments:
all_files: get all files in directory
Returns:
num_files: find the total number of files in directory.
datafile: show number of files processed
""""
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()