forked from baifendian/SparkDemo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkafka_wordcount.py
50 lines (42 loc) · 1.98 KB
/
kafka_wordcount.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
# Copyright (C) 2015 Baifendian Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
if __name__ == "__main__":
if len(sys.argv) != 5:
print("Usage: kafka_wordcount.py <zk> <topic> <groupid> <output>")
exit(-1)
# spark.streaming.kafka.maxRatePerPartition to set the maximum number of messages per partition per batch
conf = SparkConf().set("spark.default.parallelism", "2").set("spark.streaming.kafka.maxRatePerPartition", 1000)
sc = SparkContext(appName="PythonStreamingKafkaWordCount", conf=conf)
ssc = StreamingContext(sc, 20)
zkQuorum, topic, groupid, output = sys.argv[1:]
# 设置访问zk的便宜量,分largest 和smallest,默认处理是largest
kafkaParams = {"auto.offset.reset": "smallest"}
# Dict of (topic_name -> numPartitions) to consume. Each partition is consumed in its own thread
kvs = KafkaUtils.createStream(ssc, zkQuorum, groupid, {topic: 2}, kafkaParams)
lines = kvs.map(lambda x: x[1])
counts = lines.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a+b)
counts.pprint()
import datetime
now = datetime.datetime.now()
directory = now.strftime("%Y-%m-%d/%H-%M-%S")
counts.saveAsTextFiles("%s/%s" %(output, directory), "txt")
ssc.start()
ssc.awaitTermination()