-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-video.py
241 lines (167 loc) · 6.84 KB
/
test-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import time, os, sys, copy, argparse
import multiprocessing
from matplotlib import pyplot as plt
import numpy as np
# In[2]:
from moviepy.editor import *
from moviepy.video.tools.subtitles import SubtitlesClip
from pathlib import Path
import librosa, librosa.display
import resampy
import soundfile as sf
import pickle
# In[6]:
import torch
import torch.utils.data as data
from torchvision import transforms
from model import BlazeNet
from dataset import AudioDataset
from spectrogram import generate_log_spectrogram
from video_utils import *
# In[7]:
output_dir = 'output/'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# In[8]:
test_transform = transforms.Compose([
#transforms.Resize(size=128),
#transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# In[9]:
# Instantiate a neural network model
model_ft = BlazeNet(back_model=2)
model_ft = torch.load("checkpoints/blazenet_trainset_8000_4.1_None_64_0_None_512_512.pk.pth")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = model_ft.to(device)
model_ft.eval()
# In[10]:
sr=8000; segment=4.1; pre_emphasis=None
n_mels=64; fmin=0; fmax=None
n_fft=512; hop_length=512
VAD_on = True
# In[20]:
def test_cry_detection_on_video(video_file,sr=8000,segment=4.1,pre_emphasis=None,
n_mels=64,fmin=0,fmax=None,n_fft=512,hop_length=512,
VAD_on=True,verbose=False):
video_file_annot = video_file +'_crydetected.MP4'
if os.path.exists(video_file_annot):
return 0
print("Step 1.1: Extracting audio file from video file {}".format(video_file))
audio_file = extract_audio(video_file)
print("Step 1.2: Read audio file {} and resample to {}".format(audio_file,sr))
audio_data, sr = librosa.load(audio_file,sr=sr)
if verbose:
duration = librosa.get_duration(y=wav_data, sr=sr)
print("sampling rate = {}, length = {}, durations ={}s".format(sr,len(audio_data),duration))
plt.figure(1)
plt.title("Signal Wave...")
plt.plot(audio_data)
plt.show()
print("Step 2.1: Generating log-mel-spectrogram")
melgrams = generate_log_spectrogram(audio_file,None,sr=sr,duration=None,segment=segment,pre_emphasis=pre_emphasis,
n_mels=n_mels,fmin=fmin,fmax=fmax,
n_fft=n_fft, hop_length=hop_length,VAD=VAD_on,debug=True)
if len(melgrams)>0 and verbose:
print(len(melgrams))
for m in melgrams:
if m[2]:
print(m[0].shape,m[1],m[2])
break
print("Step 2.2 Saving into test dataset")
test_data = {"test": {"cry":[],"nocry":[]}
}
test_data["test"]["cry"].append((audio_file,melgrams))
dataset_file = output_dir+'testset_{}_{}_{}_{}_{}_{}_{}_{}_{}.pkl'.format(audio_file.split('/')[-1],
sr,segment,pre_emphasis,n_mels,
fmin,fmax,n_fft,hop_length)
print(dataset_file)
with open(dataset_file , 'wb') as pk_file:
pickle.dump(test_data, pk_file)
test_dataset2 = AudioDataset(dataset_file,
subset="test",
mode = "RGB",
transform = test_transform)
test_loader2 = data.DataLoader(test_dataset2,
batch_size=32,
shuffle=False,
num_workers=4)
if verbose:
for i, (img,label,src,ind,vocal) in enumerate(test_loader2):
print(i)
print(img.shape)
print(label)
print(src)
print(ind)
print(vocal)
break
if len(test_dataset2)==0:
print("Found no cry in video ",video_file)
return 1
print("Step 3: Running cry detection CNN model")
predictions = []
with torch.no_grad():
for images, labels, srcs, inds, vocals in test_loader2:
images, labels = images.to(device), labels.to(device)
outputs = model_ft(images)
_, predicted = torch.max(outputs.data, 1)
probs = torch.softmax(outputs.data, 1)[:,0]
probs = probs.cpu().detach().numpy()
inds = inds.detach().numpy()
vocals = vocals.detach().numpy()
if verbose:
print(srcs)
print(probs)
print(inds)
print(vocals)
#print(predicted)
pred = predicted.tolist()
for k in range(len(srcs)):
predictions.append((srcs[k],probs[k],inds[k],vocals[k])) # 1 is cry
predictions_by_audio = {}
cry_thresh = 0.5
audio_files = [x[0] for x in predictions]
audio_files = list(set(audio_files))
for au in audio_files:
predictions_by_audio[au] = []
for p in predictions:
predictions_by_audio[p[0]].append((p[1],p[2],p[3],p[1]>cry_thresh))
for au in predictions_by_audio:
print(au)
print(predictions_by_audio[au])
pred = predictions_by_audio[au]
print("Step 4: Annotating the video file")
subs = []
step = np.ceil(segment)
for i in range(len(pred)):
s = pred[i][1]*step
t = (pred[i][1]+1)*step
if pred[i][3]:
subs.append(((s,t),'Cry'))
#else:
# subs.append(((s,t),'nocry'))
print(subs)
generator = lambda txt: TextClip(txt, font='Arial', fontsize=48, color='red')
subtitles = SubtitlesClip(subs, generator)
video = VideoFileClip(video_file)
result = CompositeVideoClip([video, subtitles.set_pos(('center','bottom'))])
result.write_videofile(video_file_annot, fps=video.fps, remove_temp=True, codec="libx264", audio_codec="aac")
return 2
# In[19]:
#video_file = 'Self/10Cry/E062904F3842_subjectawake_1637717631593.mp4'
video_dir = 'Self/10Cry/'
video_files = os.listdir(video_dir)
video_files = [x for x in video_files if (x.endswith('mp4') or x.endswith('MP4')) and not 'crydetected' in x]
print(video_files)
# In[21]:
for v in video_files:
video_file = video_dir+v
test_cry_detection_on_video(video_file,sr=sr,segment=segment,pre_emphasis=pre_emphasis,
n_mels=n_mels,fmin=fmin,fmax=fmax,n_fft=n_fft,hop_length=hop_length,
VAD_on = VAD_on)
# In[ ]: