forked from cs231n/cs231n.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
189 lines (159 loc) · 5.66 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
layout: default
---
<div>
These notes accompany the Stanford CS class <a href="http://cs231n.stanford.edu/">CS231n: Convolutional Neural Networks for Visual Recognition</a>.
<br>
For questions/concerns/bug reports regarding contact <a href="http://cs.stanford.edu/people/jcjohns/">Justin Johnson</a> regarding the assignments, or contact <a href="cs.stanford.edu/people/karpathy/">Andrej Karpathy</a> regarding the course notes. You can also submit a pull request directly to our <a href="https://github.com/cs231n/cs231n.github.io">git repo</a>.
<br>
We encourage the use of the <a href="https://hypothes.is/">hypothes.is</a> extension to annote comments and discuss these notes inline.
</div>
<div class="home">
<div class="materials-wrap">
<div class="module-header">Winter 2016 Assignments</div>
<div class="materials-item">
<a href="assignments2016/assignment1/">
Assignment #1: Image Classification, kNN, SVM, Softmax, Neural Network
</a>
</div>
<div class="materials-item">
<a href="assignments2016/assignment2/">
Assignment #2: Fully-Connected Nets, Batch Normalization, Dropout,
Convolutional Nets
</a>
</div>
<div class="materials-item">
<a href="assignments2016/assignment3/">
Assignment #3: Recurrent Neural Networks, Image Captioning,
Image Gradients, DeepDream
</a>
</div>
<!--
<div class="module-header">Winter 2015 Assignments</div>
<div class="materials-item">
<a href="assignment1/">
Assignment #1: Image Classification, kNN, SVM, Softmax
</a>
</div>
<div class="materials-item">
<a href="assignment2/">
Assignment #2: Neural Networks, ConvNets I
</a>
</div>
<div class="materials-item">
<a href="assignment3/">
Assignment #3: ConvNets II, Transfer Learning, Visualization
</a>
</div>
-->
<div class="module-header">Module 0: Preparation</div>
<div class="materials-item">
<a href="python-numpy-tutorial/">
Python / Numpy Tutorial
</a>
</div>
<div class="materials-item">
<a href="ipython-tutorial/">
IPython Notebook Tutorial
</a>
</div>
<div class="materials-item">
<a href="terminal-tutorial/">
Terminal.com Tutorial
</a>
</div>
<div class="materials-item">
<a href="aws-tutorial/">
AWS Tutorial
</a>
</div>
<!-- hardcoding items here to force a specific order -->
<div class="module-header">Module 1: Neural Networks</div>
<div class="materials-item">
<a href="classification/">
Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits
</a>
<div class="kw">
L1/L2 distances, hyperparameter search, cross-validation
</div>
</div>
<div class="materials-item">
<a href="linear-classify/">
Linear classification: Support Vector Machine, Softmax
</a>
<div class="kw">
parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo
</div>
</div>
<div class="materials-item">
<a href="optimization-1/">
Optimization: Stochastic Gradient Descent
</a>
<div class="kw">
optimization landscapes, local search, learning rate, analytic/numerical gradient
</div>
</div>
<div class="materials-item">
<a href="optimization-2/">
Backpropagation, Intuitions
</a>
<div class="kw">
chain rule interpretation, real-valued circuits, patterns in gradient flow
</div>
</div>
<div class="materials-item">
<a href="neural-networks-1/">
Neural Networks Part 1: Setting up the Architecture
</a>
<div class="kw">
model of a biological neuron, activation functions, neural net architecture, representational power
</div>
</div>
<div class="materials-item">
<a href="neural-networks-2/">
Neural Networks Part 2: Setting up the Data and the Loss
</a>
<div class="kw">
preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions
</div>
</div>
<div class="materials-item">
<a href="neural-networks-3/">
Neural Networks Part 3: Learning and Evaluation
</a>
<div class="kw">
gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods, Adagrad/RMSprop, hyperparameter optimization, model ensembles
</div>
</div>
<div class="materials-item">
<a href="neural-networks-case-study/">
Putting it together: Minimal Neural Network Case Study
</a>
<div class="kw">
minimal 2D toy data example
</div>
</div>
<div class="module-header">Module 2: Convolutional Neural Networks</div>
<div class="materials-item">
<a href="convolutional-networks/">
Convolutional Neural Networks: Architectures, Convolution / Pooling Layers
</a>
<div class="kw">
layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies, computational considerations
</div>
</div>
<div class="materials-item">
<a href="understanding-cnn/">
Understanding and Visualizing Convolutional Neural Networks
</a>
<div class="kw">
tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons
</div>
</div>
<div class="materials-item">
<a href="transfer-learning/">
Transfer Learning and Fine-tuning Convolutional Neural Networks
</a>
</div>
</div>
</div>