forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
137 lines (110 loc) · 5.25 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import numpy as np
from utils.config import cfg
def unsorted_segment_sum(data, segment_ids, unique_labels, feature_dims):
unique_labels_shape = fluid.layers.shape(unique_labels)
zeros = fluid.layers.fill_constant(
shape=[unique_labels_shape[0], feature_dims], dtype='float32', value=0)
segment_ids = fluid.layers.unsqueeze(segment_ids, axes=[1])
segment_ids.stop_gradient = True
segment_sum = fluid.layers.scatter_nd_add(zeros, segment_ids, data)
zeros.stop_gradient = True
return segment_sum
def norm(x, axis=-1):
distance = fluid.layers.reduce_sum(
fluid.layers.abs(x), dim=axis, keep_dim=True)
return distance
def discriminative_loss_single(prediction, correct_label, feature_dim,
label_shape, delta_v, delta_d, param_var,
param_dist, param_reg):
correct_label = fluid.layers.reshape(correct_label,
[label_shape[1] * label_shape[0]])
prediction = fluid.layers.transpose(prediction, [1, 2, 0])
reshaped_pred = fluid.layers.reshape(
prediction, [label_shape[1] * label_shape[0], feature_dim])
unique_labels, unique_id, counts = fluid.layers.unique_with_counts(
correct_label)
correct_label.stop_gradient = True
counts = fluid.layers.cast(counts, 'float32')
num_instances = fluid.layers.shape(unique_labels)
segmented_sum = unsorted_segment_sum(
reshaped_pred, unique_id, unique_labels, feature_dims=feature_dim)
counts_rsp = fluid.layers.reshape(counts, (-1, 1))
mu = fluid.layers.elementwise_div(segmented_sum, counts_rsp)
counts_rsp.stop_gradient = True
mu_expand = fluid.layers.gather(mu, unique_id)
tmp = fluid.layers.elementwise_sub(mu_expand, reshaped_pred)
distance = norm(tmp)
distance = distance - delta_v
distance_pos = fluid.layers.greater_equal(distance,
fluid.layers.zeros_like(distance))
distance_pos = fluid.layers.cast(distance_pos, 'float32')
distance = distance * distance_pos
distance = fluid.layers.square(distance)
l_var = unsorted_segment_sum(
distance, unique_id, unique_labels, feature_dims=1)
l_var = fluid.layers.elementwise_div(l_var, counts_rsp)
l_var = fluid.layers.reduce_sum(l_var)
l_var = l_var / fluid.layers.cast(num_instances * (num_instances - 1),
'float32')
mu_interleaved_rep = fluid.layers.expand(mu, [num_instances, 1])
mu_band_rep = fluid.layers.expand(mu, [1, num_instances])
mu_band_rep = fluid.layers.reshape(
mu_band_rep, (num_instances * num_instances, feature_dim))
mu_diff = fluid.layers.elementwise_sub(mu_band_rep, mu_interleaved_rep)
intermediate_tensor = fluid.layers.reduce_sum(
fluid.layers.abs(mu_diff), dim=1)
intermediate_tensor.stop_gradient = True
zero_vector = fluid.layers.zeros([1], 'float32')
bool_mask = fluid.layers.not_equal(intermediate_tensor, zero_vector)
temp = fluid.layers.where(bool_mask)
mu_diff_bool = fluid.layers.gather(mu_diff, temp)
mu_norm = norm(mu_diff_bool)
mu_norm = 2. * delta_d - mu_norm
mu_norm_pos = fluid.layers.greater_equal(mu_norm,
fluid.layers.zeros_like(mu_norm))
mu_norm_pos = fluid.layers.cast(mu_norm_pos, 'float32')
mu_norm = mu_norm * mu_norm_pos
mu_norm_pos.stop_gradient = True
mu_norm = fluid.layers.square(mu_norm)
l_dist = fluid.layers.reduce_mean(mu_norm)
l_reg = fluid.layers.reduce_mean(norm(mu, axis=1))
l_var = param_var * l_var
l_dist = param_dist * l_dist
l_reg = param_reg * l_reg
loss = l_var + l_dist + l_reg
return loss, l_var, l_dist, l_reg
def discriminative_loss(prediction, correct_label, feature_dim, image_shape,
delta_v, delta_d, param_var, param_dist, param_reg):
batch_size = int(cfg.BATCH_SIZE_PER_DEV)
output_ta_loss = 0.
output_ta_var = 0.
output_ta_dist = 0.
output_ta_reg = 0.
for i in range(batch_size):
disc_loss_single, l_var_single, l_dist_single, l_reg_single = discriminative_loss_single(
prediction[i], correct_label[i], feature_dim, image_shape, delta_v,
delta_d, param_var, param_dist, param_reg)
output_ta_loss += disc_loss_single
output_ta_var += l_var_single
output_ta_dist += l_dist_single
output_ta_reg += l_reg_single
disc_loss = output_ta_loss / batch_size
l_var = output_ta_var / batch_size
l_dist = output_ta_dist / batch_size
l_reg = output_ta_reg / batch_size
return disc_loss, l_var, l_dist, l_reg