forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_demo.py
167 lines (155 loc) · 4.6 KB
/
train_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import argparse
import transforms.transforms as T
from readers.reader import Reader
from models import UNet, HRNet
def parse_args():
parser = argparse.ArgumentParser(description='RemoteSensing training')
parser.add_argument(
'--model_type',
dest='model_type',
help="Model type for traing, which is one of ('unet', 'hrnet')",
type=str,
default='hrnet')
parser.add_argument(
'--data_dir',
dest='data_dir',
help='dataset directory',
default=None,
type=str)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='model save directory',
default=None,
type=str)
parser.add_argument(
'--num_classes',
dest='num_classes',
help='Number of classes',
default=None,
type=int)
parser.add_argument(
'--channel',
dest='channel',
help='number of data channel',
default=3,
type=int)
parser.add_argument(
'--clip_min_value',
dest='clip_min_value',
help='Min values for clipping data',
nargs='+',
default=None,
type=int)
parser.add_argument(
'--clip_max_value',
dest='clip_max_value',
help='Max values for clipping data',
nargs='+',
default=None,
type=int)
parser.add_argument(
'--mean',
dest='mean',
help='Data means',
nargs='+',
default=None,
type=float)
parser.add_argument(
'--std',
dest='std',
help='Data standard deviation',
nargs='+',
default=None,
type=float)
parser.add_argument(
'--num_epochs',
dest='num_epochs',
help='number of traing epochs',
default=100,
type=int)
parser.add_argument(
'--train_batch_size',
dest='train_batch_size',
help='training batch size',
default=4,
type=int)
parser.add_argument(
'--lr', dest='lr', help='learning rate', default=0.01, type=float)
return parser.parse_args()
args = parse_args()
data_dir = args.data_dir
save_dir = args.save_dir
num_classes = args.num_classes
channel = args.channel
clip_min_value = args.clip_min_value
clip_max_value = args.clip_max_value
mean = args.mean
std = args.std
num_epochs = args.num_epochs
train_batch_size = args.train_batch_size
lr = args.lr
# 定义训练和验证时的transforms
train_transforms = T.Compose([
T.RandomVerticalFlip(0.5),
T.RandomHorizontalFlip(0.5),
T.ResizeStepScaling(0.5, 2.0, 0.25),
T.RandomPaddingCrop(1000),
T.Clip(min_val=clip_min_value, max_val=clip_max_value),
T.Normalize(
min_val=clip_min_value, max_val=clip_max_value, mean=mean, std=std),
])
eval_transforms = T.Compose([
T.Clip(min_val=clip_min_value, max_val=clip_max_value),
T.Normalize(
min_val=clip_min_value, max_val=clip_max_value, mean=mean, std=std),
])
train_list = osp.join(data_dir, 'train.txt')
val_list = osp.join(data_dir, 'val.txt')
label_list = osp.join(data_dir, 'labels.txt')
# 定义数据读取器
train_reader = Reader(
data_dir=data_dir,
file_list=train_list,
label_list=label_list,
transforms=train_transforms,
shuffle=True)
eval_reader = Reader(
data_dir=data_dir,
file_list=val_list,
label_list=label_list,
transforms=eval_transforms)
if args.model_type == 'unet':
model = UNet(num_classes=num_classes, input_channel=channel)
elif args.model_type == 'hrnet':
model = HRNet(num_classes=num_classes, input_channel=channel)
else:
raise ValueError(
"--model_type: {} is set wrong, it shold be one of ('unet', "
"'hrnet')".format(args.model_type))
model.train(
num_epochs=num_epochs,
train_reader=train_reader,
train_batch_size=train_batch_size,
eval_reader=eval_reader,
eval_best_metric='miou',
save_interval_epochs=5,
log_interval_steps=10,
save_dir=save_dir,
learning_rate=lr,
use_vdl=True)