-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
415 lines (363 loc) · 20 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from __future__ import print_function
import argparse
import random
import torch
import torchvision
import sparselearning
import models.vanilla_cnn
from models.vanilla_cnn import *
from models import cifar_resnet, initializers, vgg, convolution
from models.mlps import MLP_CIFAR10, MLP_CIFAR10_DROPOUT, STUPID_MLP_CIFAR10
from data_handling.utils import get_mnist_dataloaders, get_cifar10_dataloaders, get_cifar100_dataloaders, str2bool, get_ImageNet_loaders, get_tinyimagenet_dataloaders, get_higgs_dataloaders
from models.conv_cifar10 import SmallConvNet_CIFAR10
from models.mlps import MLP_Higgs
from models.lenet import LeNet_300_100
from data_handling.logger import *
from trainer import run_testing, run_training, resume, run_eval, run_pruning
from setup_utils import get_mask, get_optimizer
from models.imagenet_resnet import build_resnet
from models.vgg_plain import VGG16
from sparselearning.weight_preprocesser import get_weight_processer
from models.mlps import MLP
def get_parser():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
# training_and_eval
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='input batch size for training (default: 100)')
parser.add_argument('--test_batch_size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--multiplier', type=int, default=1, metavar='N',
help='extend training time by multiplier times')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', type=str2bool, default="false",
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=0, metavar='S', help='random seed (default: 0)')
parser.add_argument('--optimizer', type=str, default='sgd', choices=["adam", "sgd"],
help='The optimizer to use. Default: sgd. Options: sgd, adam.')
parser.add_argument('--data', type=str, default='mnist', choices=["mnist", "cifar10", "higgs", "tiny"])
parser.add_argument('--fp16', type=str2bool, default="false", help='Run in fp16 mode.')
parser.add_argument('--valid_split', type=float, default=0.1)
parser.add_argument('--resume', type=str)
# parser.add_argument('--start-epoch', type=int, default=1)
parser.add_argument('--model', type=str, default='', help='model to use. Options: mlp_cifar10, conv_cifar10, mlp_higgs, ...')
parser.add_argument('--l2', type=float, default=5.0e-4)
# other
parser.add_argument('--bench', type=str2bool, default="true",
help='Enables the benchmarking of layers and estimates sparse speedups')
parser.add_argument('--max_threads', type=int, default=10, help='How many threads to use for data loading.')
# saving and logging
parser.add_argument('--log_dir', type=str, default='./logs', help='where to store the logs')
parser.add_argument('--save_dir', type=str, default='./save', help='where to store other results')
parser.add_argument('--verbose', type=str2bool, default="true", help="toggle the verbose mode")
parser.add_argument('--log_interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save_features', type=str2bool, default="false",
help='Resumes a saved model and saves its feature data to disk for plotting.')
parser.add_argument('--save_checkpoint', type=str2bool, default="false")
# sparse
parser.add_argument('--scaled', type=str2bool, default="false", help='scale the initialization by 1/density')
parser.add_argument('--use_wandb', type=str2bool, default="true")
parser.add_argument('--save_locally', type=str2bool, default="true")
parser.add_argument('--gamma', type=float, default=1.0)
parser.add_argument('--tag', type=str, help="experiment type. Used only for wandb")
parser.add_argument('--opt_order', type=str, choices=["before", "after"], default="before")
parser.add_argument('--manual_stop', type=str2bool, default="false", help="if true, will automatically stop the "
"training after first pruning")
parser.add_argument("--distributed", type=str2bool, default="false")
parser.add_argument('--init_type', type=str, default="default",
choices=['binary', 'kaiming_normal', 'scaled_kaiming_normal', 'kaiming_uniform', 'orthogonal',
'conv_orthogonal', 'delta_orthogonal', 'bimodal_kaiming_normal', 'default'])
parser.add_argument('--step1', type=int)
parser.add_argument('--step2', type=int)
parser.add_argument('--end_pruning', type=str2bool, default="false")
parser.add_argument('--double_precision', type=str2bool, default="false")
# mlp
parser.add_argument('--depth', type=int, default=7)
parser.add_argument('--width', type=int, default=100)
parser.add_argument('--activation', type=str, default="tanh", choices=["linear", "tanh", "relu", "selu", "hard_tanh"])
#cnn
parser.add_argument('--channel_width', type=int, default=128)
# ortho and DI
parser.add_argument('--weight_processer', type=str, default="none", choices=["AI", "sao", "sparse_orthogonal", "sparse_fan_in", "none"])
parser.add_argument('--log_preprocessing', type=str2bool, default='false')
parser.add_argument('--record_jacobian', type=str2bool, default='false')
parser.add_argument('--AI_iters', type=int, default=10000)
parser.add_argument('--sigma_w', type=float, default=1)
parser.add_argument('--sigma_b', type=float, default=0)
parser.add_argument('--q_star', type=float, default=1)
parser.add_argument('--more_nonzeros', type=str2bool, default='false')
parser.add_argument('--log_every_iter', type=str2bool, default="false")
#sao
parser.add_argument('--degree', type=int)
parser.add_argument('--same_mask', type=str2bool, default='false')
parser.add_argument('--log-dpl-and-exit', type=str2bool, default='false')
sparselearning.core.add_sparse_args(parser)
return parser
def main(args):
if args.sparse_init.endswith("AI"):
args.weight_processer = "AI"
if args.sparse_init.endswith("EI"):
args.weight_processer = "sparse_orthogonal"
if args.sparse_init.endswith("SAO"):
args.weight_processer = "sao"
if args.sparse_init.endswith("EIS"):
args.weight_processer = "structured_sparse_orthogonal"
logger = setup_logger(args)
if args.verbose:
print_and_log(args)
if args.fp16:
try:
from apex.fp16_utils import FP16_Optimizer
except:
print('WARNING: apex not installed, ignoring --fp16 option')
args.fp16 = False
use_cuda = not args.no_cuda and torch.cuda.is_available()
if not args.no_cuda:
assert torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if args.verbose:
print_and_log('\n\n')
print_and_log('=' * 80)
if args.death not in ["magnitude", "Random", "SET", "SETFixed", "RunningMagnitude"]:
args.opt_order = "after"
if args.manual_stop:
args.opt_order = "after"
fix_seeds(args)
output, test_loader, train_loader, valid_loader = get_data(args)
model = get_model(args, device, output)
if args.weight_processer == "sao":
from sao.init_calls import Delta_Init, Linear_Init
if not args.sparse:
assert args.degree == args.channel_width, "Asking for a dense model but performing sao with degree < channel_width (so a sparse model). Collision - changed one of the variables to either perform dense or sparse training"
sparsity = 1-args.density if args.degree is None else None
print("Calling SAO with degree {} and sparsity {}".format(args.degree, sparsity))
if "mlp" in args.model:
model = Linear_Init(model, method="SAO", gain=args.sigma_w, sigma_b=args.sigma_b, sparsity=sparsity, degree=args.degree,
activation=args.activation, in_channels_0 = 3, num_classes=output)
else:
model = Delta_Init(model, method="SAO", gain=args.sigma_w, sigma_b=args.sigma_b, sparsity=sparsity, degree=args.degree,
activation=args.activation, in_channels_0 = 3, num_classes=output)
model.sao_called=True
args.sparse=False # To prevent calling the masks
for name, burren in model.named_buffers():
print(name, torch.count_nonzero(burren)/torch.numel(burren))
else:
model.sao_called=False
if args.verbose:
info_beginning(args, model)
print_and_log(f"Total number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
optimizer = get_optimizer(args, model)
if args.step1 is not None and args.step2 is None:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[args.step1],
last_epoch=-1)
elif args.step1 is not None and args.step2 is not None:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[args.step1, args.step2],
last_epoch=-1)
else:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(args.epochs / 2) * args.multiplier,
int(args.epochs * 3 / 4) * args.multiplier],
last_epoch=-1)
if args.resume:
resume(args, device, model, optimizer, test_loader)
if args.fp16:
model, optimizer = setup_fp16(args, model, optimizer)
mask = get_mask(args, model, optimizer, train_loader, device)
# create output file
save_subfolder = get_output_file(args)
print('Densities after initialization')
if mask is not None:
densities = mask.print_density()
if args.log_dpl_and_exit:
metrics = {"layer_densities":densities}
logger.log(metrics)
logger.save()
logger.finish()
exit(0)
if args.double_precision:
#go back to 32 precison, since "nll_loss_forward_reduce_cuda_kernel_2d_index" not implemented for 'Double'
model = model.to(torch.float32)
mask.double_precision = False
best_acc = 0.0
preprocesser = get_weight_processer(args, model, mask, logger, output, device)
preprocesser()
print('Densities after preprocessing')
if mask is not None:
if args.degree is None:
mask.print_density(check=True) # also verifies if there's no target / actual density mismatch
else:
mask.print_density(check=False)
run_training(args, best_acc, device, lr_scheduler, mask, model, optimizer, save_subfolder, train_loader,
valid_loader, logger)
run_eval(args, device, model, save_subfolder, test_loader, logger)
# run_testing(args, device, model, save_subfolder, test_loader, logger)
if args.end_pruning and not args.sparse:
densities = [0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0]
args.sparse_init = "global_magnitude"
args.sparse = True
metric_dict={}
for d in densities:
d_model = get_model(args, device, output)
d_model.load_state_dict(model.state_dict())
args.density = d
mask = get_mask(args, d_model, optimizer, train_loader, device)
mask.apply_mask()
test_loss, test_acc = run_pruning(args, device, d_model, test_loader)
metric_dict["p_{}_eval_loss".format(args.density)] = test_loss
metric_dict["p_{}_eval_acc".format(args.density)] = test_acc
logger.log_no_step_dict(metric_dict)
def setup_fp16(args, model, optimizer):
if args.verbose:
print('FP16')
optimizer = FP16_Optimizer(optimizer,
static_loss_scale=None,
dynamic_loss_scale=True,
dynamic_loss_args={'init_scale': 2 ** 16})
model = model.half()
return model, optimizer
def get_output_file(args):
# save_path = os.path.join(args.save_dir,
# os.path.join(str(args.model),
# os.path.join(str(args.data),
# os.path.join(str(args.sparse_init), str(args.seed)))))
# if args.sparse:
# save_subfolder = os.path.join(save_path, 'sparsity' + str(1 - args.density))
# else:
# save_subfolder = os.path.join(save_path, 'dense')
save_subfolder = args.save_dir
if not os.path.exists(save_subfolder): os.makedirs(save_subfolder)
return save_subfolder
def get_model(args, device, output):
last = "logits" if "GraSP" in args.death else "logsoftmax"
if args.model == 'resnet50':
last = 'logits'
if args.data == "higgs":
last = 'logits'
print("Last layer output type (data=higgs always uses logits):", last)
if args.record_jacobian:
last = 'logits'
print("If recording jacobian, always use:", last)
if args.scaled:
init_type = 'scaled_kaiming_normal'
else:
init_type = args.init_type
if "vgg-like" == args.model:
model = VGG16("like", num_classes=10, last=last, actv_fn=args.activation,
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed)).to(device)
elif "vgg-C" == args.model:
model = VGG16("C", num_classes=10, last=last, actv_fn=args.activation,
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed)).to(device)
elif "vgg-16-pytorch" == args.model:
model = torchvision.models.vgg16_bn(num_classes=10).to(device)
model.last = "logits"
elif 'vgg' in args.model:
#model = vgg.VGG(depth=int(args.model[-2:]), dataset=args.data, batchnorm=True, last=last).to(device)
model = vgg.VGG(depth=int(args.model[-2:]), dataset=args.data, batchnorm=True, actv_fn=args.activation, last=last,
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed)).to(device)
elif 'mlp_cifar10' == args.model:
model = MLP_CIFAR10(last=last, init_weights=initializers.initializations(init_type,args.density, args, seed=args.seed)).to(device)
elif 'mlp_cifar10_dropout' == args.model:
model = MLP_CIFAR10_DROPOUT(last=last, density=args.density).to(device)
elif 'stupid_mlp' == args.model:
model = STUPID_MLP_CIFAR10(last=last, init_weights=initializers.initializations(init_type,args.density, args, seed=args.seed)).to(device)
elif 'mlp' == args.model:
model = MLP(output=output, depth=args.depth, width=args.width, actv_fn=args.activation, last="logits",
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed)).to(device)
elif 'resnet50' == args.model:
model = build_resnet('resnet50', 'classic')
elif 'conv_cifar10' in args.model:
model = SmallConvNet_CIFAR10(last=last).to(device)
elif args.model == 'mlp_higgs':
model = MLP_Higgs().to(device)
elif 'cifar_resnet' in args.model:
model = cifar_resnet.Model.get_model_from_name(args.model,
initializers.initializations(init_type, args.density, args, seed=args.seed),
outputs=output, actv_fn=args.activation, last=last).to(device)
elif 'conv' in args.model:
model = convolution.CifarConv(output=output, depth=args.depth, actv_fn=args.activation, last="logits",
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed), width=args.channel_width).to(device)
elif 'van' in args.model:
model = models.vanilla_cnn.__dict__[args.model](
c=args.channel_width, num_classes=output, activation=args.activation, last="logits",
init_weights=initializers.initializations(init_type, args.density, args, seed=args.seed)
).to(device)
elif 'efficientnet-b0' in args.model:
model = torchvision.models.efficientnet_b0(num_classes=output)
model = model.to(device)
model.last = "logits"
init_weights = initializers.initializations(init_type, args.density, args, seed=args.seed)
model.apply(init_weights)
elif 'efficientnet-b1' in args.model:
model = torchvision.models.efficientnet_b1(num_classes=output)
model = model.to(device)
model.last = "logits"
init_weights = initializers.initializations(init_type, args.density, args, seed=args.seed)
model.apply(init_weights)
elif 'efficientnet-b3' in args.model:
model = torchvision.models.efficientnet_b3(num_classes=output)
model = model.to(device)
model.last = "logits"
init_weights = initializers.initializations(init_type, args.density, args, seed=args.seed)
model.apply(init_weights)
elif 'efficientnet-v2-s' in args.model:
model = torchvision.models.efficientnet_v2_s(num_classes=output)
model = model.to(device)
model.last = "logits"
init_weights = initializers.initializations(init_type, args.density, args, seed=args.seed)
model.apply(init_weights)
else:
raise ValueError("Unknown model {}".format(args.model))
model.output_dim = output
if args.double_precision:
model.to(torch.float64)
print("Using double precision")
return model
def get_data(args):
if args.data == 'mnist':
train_loader, valid_loader, test_loader = get_mnist_dataloaders(args, validation_split=args.valid_split)
output = 10
elif args.data == 'cifar10':
train_loader, valid_loader, test_loader = get_cifar10_dataloaders(args, args.valid_split,
max_threads=args.max_threads)
output = 10
elif args.data == 'cifar100':
train_loader, valid_loader, test_loader = get_cifar100_dataloaders(args, args.valid_split,
max_threads=args.max_threads)
output = 100
elif args.data == 'imagenet':
print ("WARNING: valid and test are the same dataset in this implementation")
train_loader, valid_loader, test_loader = get_ImageNet_loaders(args, distributed=False)
output = 1000
elif args.data == 'tiny':
print ("WARNING: valid and test are the same dataset in this implementation")
train_loader, valid_loader, test_loader = get_tinyimagenet_dataloaders(args)
output = 200
elif args.data == 'higgs':
train_loader, valid_loader, test_loader = get_higgs_dataloaders(args)
output = 1 # binary classification, just one output is needed
else:
raise ValueError("Unknown dataset")
return output, test_loader, train_loader, valid_loader
def fix_seeds(args):
# fix random seed for Reproducibility
torch.backends.cudnn.benchmark = args.bench
torch.backends.cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def parse_args_default(args=None):
parser = get_parser()
return parser.parse_args(args=args)
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)