-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_config.yml
49 lines (38 loc) · 2.01 KB
/
train_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# configures the tile used
tile_id: '32TNS'
# configures the satellite used
satellite: 'sentinel2' # 'sentinel2' or 'landsat8'
# if you wish to run the pipeline for hand selected dates
# you can specify them here (using yml array syntax)
dates: [ ]
# selected dates (36 dates):
# dates: [ '20210111T102309', '20210116T102351', '20210121T102239', '20210126T102311', '20210131T102149',
# '20210215T102121', '20210220T101939', '20210225T102021', '20210302T101839', '20210307T102021', '20210322T101649',
# '20210401T101559', '20210406T102021', '20210416T102021', '20210526T102021', '20210531T101559', '20210610T101559',
# '20210615T102021', '20210625T102021', '20210705T102031', '20210710T101559', '20210720T101559', '20210730T101559',
# '20210814T102031', '20210819T101559', '20210824T102031', '20210903T102021', '20210908T101559', '20210913T102021',
# '20210918T101639', '20211008T101829', '20211013T101951', '20211018T101939', '20211028T102039', '20211102T102201',
# '20211112T102251' ]
# This section describes which masks should be used to train the model
# masks can be generated automatically based on existing algorithms
# or masks can be loaded from a directory
ground_truth_masks:
# use the auto annotator to create the ground truth (1 or 0)
# currently this computes the s2cloudless predictions which is very slow
# then combines them with the ExoLab predictions and the water mask
# automatic maks can only be created for S2 data not for L8
auto_annotation: 0
# This section describes the training and validation dataset creation/loading
dataset:
# forces a recreation of the dataset (1 or 0)
# this deletes the dataset folder and recreates it using the current raw data
# will be ignored if create_on_the_fly is enabled
recreate_dataset: 0
# limits the number of dates to be used for the dataset
# if you wish to use all dates, just set this to 0
limit_dates: 1
training:
# enables the training (1 or 0)
enable: 1
# continues the training from the checkpoint "unet.pth" (1 or 0)
continue_training: 0