forked from MediaBrain-SJTU/FACT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
90 lines (72 loc) · 3.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import ast
from collections import deque
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from models.model_factory import *
from optimizer.optimizer_helper import get_optim_and_scheduler
from data import *
from utils.Logger import Logger
from utils.tools import *
import warnings
warnings.filterwarnings("ignore")
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--source", choices=available_datasets, help="Source", nargs='+')
parser.add_argument("--target", choices=available_datasets, help="Target")
parser.add_argument("--input_dir", default=None, help="The directory of dataset lists")
parser.add_argument("--output_dir", default=None, help="The directory to save logs and models")
parser.add_argument("--config", default=None, help="Experiment configs")
parser.add_argument("--tf_logger", type=ast.literal_eval, default=True, help="If true will save tensorboard compatible logs")
parser.add_argument("--ckpt", default=None, help="The directory to models")
args = parser.parse_args()
config_file = "config." + args.config.replace("/", ".")
print(f"\nLoading experiment {args.config}\n")
config = __import__(config_file, fromlist=[""]).config
return args, config
class Evaluator:
def __init__(self, args, config, device):
self.args = args
self.config = config
self.device = device
self.global_step = 0
# networks
self.encoder = get_encoder_from_config(self.config["networks"]["encoder"]).to(device)
self.classifier = get_classifier_from_config(self.config["networks"]["classifier"]).to(device)
# dataloaders
self.test_loader = get_test_loader(args=self.args, config=self.config)
def do_eval(self, loader):
correct = 0
for it, (batch, domain) in enumerate(loader):
data, labels, domains = batch[0].to(self.device), batch[1].to(self.device), domain.to(self.device)
features = self.encoder(data)
scores = self.classifier(features)
correct += calculate_correct(scores, labels)
return correct
def do_testing(self):
self.logger = Logger(self.args, self.config, update_frequency=30)
self.encoder.eval()
self.classifier.eval()
if self.args.ckpt is not None:
state_dict = torch.load(self.args.ckpt, map_location=lambda storage, loc: storage)
encoder_state = state_dict["encoder_state_dict"]
classifier_state = state_dict["classifier_state_dict"]
self.encoder.load_state_dict(encoder_state)
self.classifier.load_state_dict(classifier_state)
with torch.no_grad():
total = len(self.test_loader.dataset)
class_correct = self.do_eval(self.test_loader)
class_acc = float(class_correct) / total
self.logger.log_test(f'Test accuracy', {'class': class_acc})
def main():
args, config = get_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
evaluator = Evaluator(args, config, device)
evaluator.do_testing()
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
main()