-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_Explainable.py
119 lines (70 loc) · 2.78 KB
/
test_Explainable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader
from loader import *
from models.model import MHA_UNet
from dataset.npy_datasets import NPY_datasets
from engine import *
import os
import sys
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # "0, 1, 2, 3"
from utils import *
from configs.config_setting import setting_config
import warnings
warnings.filterwarnings("ignore")
def main(config):
print('#----------Creating logger----------#')
sys.path.append(config.work_dir + '/')
log_dir = os.path.join(config.work_dir, 'log')
checkpoint_dir = os.path.join(config.work_dir, 'checkpoints')
resume_model = os.path.join('')
outputs = os.path.join(config.work_dir, 'outputs')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if not os.path.exists(outputs):
os.makedirs(outputs)
global logger
logger = get_logger('train', log_dir)
log_config_info(config, logger)
print('#----------GPU init----------#')
set_seed(config.seed)
gpu_ids = [0]# [0, 1, 2, 3]
torch.cuda.empty_cache()
print('#----------Preparing dataset----------#')
data_path = ''
test_dataset = isic_loader(path_Data = data_path, train = False, Test = True)
test_loader = DataLoader(test_dataset,
batch_size=1,
shuffle=False,
pin_memory=True,
num_workers=config.num_workers,
drop_last=True)
print('#----------Prepareing Models----------#')
model = MHA_UNet()
model = torch.nn.DataParallel(model.cuda(), device_ids=gpu_ids, output_device=gpu_ids[0])
print('#----------Prepareing loss, opt, sch and amp----------#')
criterion = config.criterion
optimizer = get_optimizer(config, model)
scheduler = get_scheduler(config, optimizer)
scaler = GradScaler()
print('#----------Set other params----------#')
min_loss = 999
start_epoch = 1
min_epoch = 1
if os.path.exists(resume_model):
print('#----------Resume Model and Other params----------#')
checkpoint = torch.load(resume_model, map_location=torch.device('cpu'))
print('#----------Testing----------#')
best_weight = torch.load(resume_model, map_location=torch.device('cpu'))
model.module.load_state_dict(best_weight)
loss = test_one_epoch_explainable(
test_loader,
model,
criterion,
logger,
config,
)
if __name__ == '__main__':
config = setting_config
main(config)