forked from chenyuntc/simple-faster-rcnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
258 lines (208 loc) · 9.24 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from __future__ import absolute_import
import os
from collections import namedtuple
import time
from torch.nn import functional as F
from model.utils.creator_tool import AnchorTargetCreator, ProposalTargetCreator
from torch import nn
import torch as t
from utils import array_tool as at
from utils.vis_tool import Visualizer
from utils.config import opt
from torchnet.meter import ConfusionMeter, AverageValueMeter
LossTuple = namedtuple('LossTuple',
['rpn_loc_loss',
'rpn_cls_loss',
'roi_loc_loss',
'roi_cls_loss',
'total_loss'
])
class FasterRCNNTrainer(nn.Module):
"""wrapper for conveniently training. return losses
The losses include:
* :obj:`rpn_loc_loss`: The localization loss for \
Region Proposal Network (RPN).
* :obj:`rpn_cls_loss`: The classification loss for RPN.
* :obj:`roi_loc_loss`: The localization loss for the head module.
* :obj:`roi_cls_loss`: The classification loss for the head module.
* :obj:`total_loss`: The sum of 4 loss above.
Args:
faster_rcnn (model.FasterRCNN):
A Faster R-CNN model that is going to be trained.
"""
def __init__(self, faster_rcnn):
super(FasterRCNNTrainer, self).__init__()
self.faster_rcnn = faster_rcnn
self.rpn_sigma = opt.rpn_sigma
self.roi_sigma = opt.roi_sigma
# target creator create gt_bbox gt_label etc as training targets.
self.anchor_target_creator = AnchorTargetCreator()
self.proposal_target_creator = ProposalTargetCreator()
self.loc_normalize_mean = faster_rcnn.loc_normalize_mean
self.loc_normalize_std = faster_rcnn.loc_normalize_std
self.optimizer = self.faster_rcnn.get_optimizer()
# visdom wrapper
self.vis = Visualizer(env=opt.env)
# indicators for training status
self.rpn_cm = ConfusionMeter(2)
self.roi_cm = ConfusionMeter(21)
self.meters = {k: AverageValueMeter() for k in LossTuple._fields} # average loss
def forward(self, imgs, bboxes, labels, scale):
"""Forward Faster R-CNN and calculate losses.
Here are notations used.
* :math:`N` is the batch size.
* :math:`R` is the number of bounding boxes per image.
Currently, only :math:`N=1` is supported.
Args:
imgs (~torch.autograd.Variable): A variable with a batch of images.
bboxes (~torch.autograd.Variable): A batch of bounding boxes.
Its shape is :math:`(N, R, 4)`.
labels (~torch.autograd..Variable): A batch of labels.
Its shape is :math:`(N, R)`. The background is excluded from
the definition, which means that the range of the value
is :math:`[0, L - 1]`. :math:`L` is the number of foreground
classes.
scale (float): Amount of scaling applied to
the raw image during preprocessing.
Returns:
namedtuple of 5 losses
"""
n = bboxes.shape[0]
if n != 1:
raise ValueError('Currently only batch size 1 is supported.')
_, _, H, W = imgs.shape
img_size = (H, W)
features = self.faster_rcnn.extractor(imgs)
rpn_locs, rpn_scores, rois, roi_indices, anchor = \
self.faster_rcnn.rpn(features, img_size, scale)
# Since batch size is one, convert variables to singular form
bbox = bboxes[0]
label = labels[0]
rpn_score = rpn_scores[0]
rpn_loc = rpn_locs[0]
roi = rois
# Sample RoIs and forward
# it's fine to break the computation graph of rois,
# consider them as constant input
sample_roi, gt_roi_loc, gt_roi_label = self.proposal_target_creator(
roi,
at.tonumpy(bbox),
at.tonumpy(label),
self.loc_normalize_mean,
self.loc_normalize_std)
# NOTE it's all zero because now it only support for batch=1 now
sample_roi_index = t.zeros(len(sample_roi))
roi_cls_loc, roi_score = self.faster_rcnn.head(
features,
sample_roi,
sample_roi_index)
# ------------------ RPN losses -------------------#
gt_rpn_loc, gt_rpn_label = self.anchor_target_creator(
at.tonumpy(bbox),
anchor,
img_size)
gt_rpn_label = at.totensor(gt_rpn_label).long()
gt_rpn_loc = at.totensor(gt_rpn_loc)
rpn_loc_loss = _fast_rcnn_loc_loss(
rpn_loc,
gt_rpn_loc,
gt_rpn_label.data,
self.rpn_sigma)
# NOTE: default value of ignore_index is -100 ...
rpn_cls_loss = F.cross_entropy(rpn_score, gt_rpn_label.cuda(), ignore_index=-1)
_gt_rpn_label = gt_rpn_label[gt_rpn_label > -1]
_rpn_score = at.tonumpy(rpn_score)[at.tonumpy(gt_rpn_label) > -1]
self.rpn_cm.add(at.totensor(_rpn_score, False), _gt_rpn_label.data.long())
# ------------------ ROI losses (fast rcnn loss) -------------------#
n_sample = roi_cls_loc.shape[0]
roi_cls_loc = roi_cls_loc.view(n_sample, -1, 4)
roi_loc = roi_cls_loc[t.arange(0, n_sample).long().cuda(), \
at.totensor(gt_roi_label).long()]
gt_roi_label = at.totensor(gt_roi_label).long()
gt_roi_loc = at.totensor(gt_roi_loc)
roi_loc_loss = _fast_rcnn_loc_loss(
roi_loc.contiguous(),
gt_roi_loc,
gt_roi_label.data,
self.roi_sigma)
roi_cls_loss = nn.CrossEntropyLoss()(roi_score, gt_roi_label.cuda())
self.roi_cm.add(at.totensor(roi_score, False), gt_roi_label.data.long())
losses = [rpn_loc_loss, rpn_cls_loss, roi_loc_loss, roi_cls_loss]
losses = losses + [sum(losses)]
return LossTuple(*losses)
def train_step(self, imgs, bboxes, labels, scale):
self.optimizer.zero_grad()
losses = self.forward(imgs, bboxes, labels, scale)
losses.total_loss.backward()
self.optimizer.step()
self.update_meters(losses)
return losses
def save(self, save_optimizer=False, save_path=None, **kwargs):
"""serialize models include optimizer and other info
return path where the model-file is stored.
Args:
save_optimizer (bool): whether save optimizer.state_dict().
save_path (string): where to save model, if it's None, save_path
is generate using time str and info from kwargs.
Returns:
save_path(str): the path to save models.
"""
save_dict = dict()
save_dict['model'] = self.faster_rcnn.state_dict()
save_dict['config'] = opt._state_dict()
save_dict['other_info'] = kwargs
save_dict['vis_info'] = self.vis.state_dict()
if save_optimizer:
save_dict['optimizer'] = self.optimizer.state_dict()
if save_path is None:
timestr = time.strftime('%m%d%H%M')
save_path = 'checkpoints/fasterrcnn_%s' % timestr
for k_, v_ in kwargs.items():
save_path += '_%s' % v_
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
t.save(save_dict, save_path)
self.vis.save([self.vis.env])
return save_path
def load(self, path, load_optimizer=True, parse_opt=False, ):
state_dict = t.load(path)
if 'model' in state_dict:
self.faster_rcnn.load_state_dict(state_dict['model'])
else: # legacy way, for backward compatibility
self.faster_rcnn.load_state_dict(state_dict)
return self
if parse_opt:
opt._parse(state_dict['config'])
if 'optimizer' in state_dict and load_optimizer:
self.optimizer.load_state_dict(state_dict['optimizer'])
return self
def update_meters(self, losses):
loss_d = {k: at.scalar(v) for k, v in losses._asdict().items()}
for key, meter in self.meters.items():
meter.add(loss_d[key])
def reset_meters(self):
for key, meter in self.meters.items():
meter.reset()
self.roi_cm.reset()
self.rpn_cm.reset()
def get_meter_data(self):
return {k: v.value()[0] for k, v in self.meters.items()}
def _smooth_l1_loss(x, t, in_weight, sigma):
sigma2 = sigma ** 2
diff = in_weight * (x - t)
abs_diff = diff.abs()
flag = (abs_diff.data < (1. / sigma2)).float()
y = (flag * (sigma2 / 2.) * (diff ** 2) +
(1 - flag) * (abs_diff - 0.5 / sigma2))
return y.sum()
def _fast_rcnn_loc_loss(pred_loc, gt_loc, gt_label, sigma):
in_weight = t.zeros(gt_loc.shape).cuda()
# Localization loss is calculated only for positive rois.
# NOTE: unlike origin implementation,
# we don't need inside_weight and outside_weight, they can calculate by gt_label
in_weight[(gt_label > 0).view(-1, 1).expand_as(in_weight).cuda()] = 1
loc_loss = _smooth_l1_loss(pred_loc, gt_loc, in_weight.detach(), sigma)
# Normalize by total number of negtive and positive rois.
loc_loss /= ((gt_label >= 0).sum().float()) # ignore gt_label==-1 for rpn_loss
return loc_loss