-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_web_server.py
47 lines (39 loc) · 1.9 KB
/
run_web_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import json
import time
import torch
import argparse
import gradio as gr
from GenMM import GenMM
from nearest_neighbor.losses import PatchCoherentLoss
from dataset.tracks_motion import TracksMotion
args = argparse.ArgumentParser(description='Web server for GenMM')
args.add_argument('-d', '--device', default="cuda:0", type=str, help='device to use.')
args.add_argument('--ip', default="0.0.0.0", type=str, help='interface url to host.')
args.add_argument('--port', default=8000, type=int, help='interface port to serve.')
args.add_argument('--debug', action='store_true', help='debug mode.')
args = args.parse_args()
def generate(data):
data = json.loads(data)
# create track object
motion_data = [TracksMotion(data['tracks'], repr='repr6d', use_velo=True, keep_y_pos=True, padding_last=False)]
model = GenMM(device=args.device, silent=True)
criteria = PatchCoherentLoss(patch_size=data['setting']['patch_size'],
alpha=data['setting']['alpha'] if data['setting']['completeness'] else None,
loop=data['setting']['loop'], cache=True)
# start generation
start = time.time()
syn = model.run(motion_data, criteria,
num_frames=str(data['setting']['frames']),
num_steps=data['setting']['num_steps'],
noise_sigma=data['setting']['noise_sigma'],
patch_size=data['setting']['patch_size'],
coarse_ratio=f'{data["setting"]["coarse_ratio"]}x_nframes',
# coarse_ratio=f'3x_patchsize',
pyr_factor=data['setting']['pyr_factor'])
end = time.time()
data['time'] = end - start
data['tracks'] = motion_data[0].parse(syn)
return data
if __name__ == '__main__':
demo = gr.Interface(fn=generate, inputs="json", outputs="json")
demo.launch(debug=args.debug, server_name=args.ip, server_port=args.port)