-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
37 lines (32 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import warnings
import argparse
from utils import build_env, process_data, gen_csv_prediction
from train import train
warnings.filterwarnings('ignore')
def parse_arguments():
parser = argparse.ArgumentParser(description='Train GNN for link prediction on academic network.')
parser.add_argument('--num_epochs', default=50, type=int, help='maximum training epochs')
parser.add_argument('--lr', default=2e-4, type=float, help='learning rate')
parser.add_argument('--wd', default=4e-4, type=float, help='weight decay')
parser.add_argument('--lr_period', default=10, type=int, help='period for lr_scheduler')
parser.add_argument('--lr_decay', default=0.78, type=float, help='gamma decay factor for lr')
parser.add_argument('--in_dim', default=512, type=int, help='dimensionality of input embedding')
parser.add_argument('--h_dim', default=256, type=int, help='dimensionality of hidden embedding')
parser.add_argument('--out_dim', default=64, type=int, help='dimensionality of output embedding')
parser.add_argument('--cuda', default=0, type=int, help='gpu index')
parser.add_argument('--k', default=4, type=int, help='times for negative sampling')
parser.add_argument('--seed', default=1063, type=int, help='global random seed for reproduction')
parser.add_argument('--batch_size', default=10000, type=int, help='batch size for graph sampler')
parser.add_argument('--num_layers', default=4, type=int, help='Number of Conv layers in the GNN')
args = parser.parse_args()
return args
def main(args):
device = f'cuda:{args.cuda}' if args.cuda >= 0 and torch.cuda.is_available() else 'cpu'
train_refs, test_refs, refs_to_pred, cite_edges, coauthor_edges, paper_feature = process_data()
hetero_graph, rel_list = build_env(train_refs, cite_edges, coauthor_edges, paper_feature, device)
best_embed, best_thresh, best_f1 = train(args, hetero_graph, test_refs, rel_list, device)
gen_csv_prediction(best_embed, refs_to_pred, best_thresh, best_f1, args.seed)
if __name__ == '__main__':
args = parse_arguments()
main(args)