forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUglyNumber.II.cpp
107 lines (94 loc) · 3.42 KB
/
UglyNumber.II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// Source : https://leetcode.com/problems/ugly-number-ii/
// Author : Hao Chen
// Date : 2015-10-21
/***************************************************************************************
*
* Write a program to find the n-th ugly number.
*
* Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For
* example, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.
*
* Note that 1 is typically treated as an ugly number.
*
* The naive approach is to call isUgly for every number until you reach the nth one.
* Most numbers are not ugly. Try to focus your effort on generating only the ugly ones.
*
* An ugly number must be multiplied by either 2, 3, or 5 from a smaller ugly number.
*
* The key is how to maintain the order of the ugly numbers. Try a similar approach
* of merging from three sorted lists: L1, L2, and L3.
*
* Assume you have Uk, the kth ugly number. Then Uk+1 must be Min(L1 * 2, L2 * 3, L3
* * 5).
*
* Credits:Special thanks to @jianchao.li.fighter for adding this problem and creating
* all test cases.
*
***************************************************************************************/
class Solution {
public:
int min(int a, int b) {
return a < b ? a:b;
}
int min(int a, int b, int c) {
return min( min(a, b), c);
}
//
// The idea is we generate the ugly number instead of checking every number.
//
// To generate the next ugly number, we can use the existed ugly numbers to multipy 2,3,5,
// and get the minimal one.
//
// Let's start from the first ugly number - [1]
//
// [1] next = min( 1*2=2, 1*3=3, 1*5=5) = 2
//
// Now we have [1,2], we can see, only the second one need be multipied by 2
// but both 3 and 5 still need be multipied by first one. So:
//
// [1,2] next = min(2*2=4, 1*3=3, 1*5=5) = 3
//
// Now we have [1,2,3], we can see the second one need be mulityped by 2 and 3,
// but the 5 still needs be multipied by first one. So:
//
// [1,2,3] next = min (2*2, 2*3, 1*5) = 4
//
// and so on...
//
// So, we can see we need to maintain three indics in ugly number list,
// each one represents the place need be mulipied by 2,3,5.
//
// And we increase the index who's multiplication is the minimal.
//
int nthUglyNumber01(int n) {
int i=0, j=0, k=0;
vector<int> v(1,1);
while(v.size() < n){
int next = min(v[i]*2, v[j]*3, v[k]*5);
if (next == v[i]*2) i++;
if (next == v[j]*3) j++;
if (next == v[k]*5) k++;
v.push_back(next);
}
return v.back();
}
// This version just uses the static variable to cache
// the 3 indics and the ugly number list
int nthUglyNumber02(int n) {
static int i=0, j=0, k=0;
static vector<int> v(1,1);
if (v.size()>=n) return v[n-1];
while(v.size() < n){
int next = min(v[i]*2, v[j]*3, v[k]*5);
if (next == v[i]*2) i++;
if (next == v[j]*3) j++;
if (next == v[k]*5) k++;
v.push_back(next);
}
return v.back();
}
int nthUglyNumber(int n) {
return nthUglyNumber02(n); // 4ms-8ms
return nthUglyNumber01(n); // 28ms
}
};