forked from dingkeyan93/DISTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDISTS_tf.py
119 lines (97 loc) · 5.21 KB
/
DISTS_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# This is a tensorflow implementation of DISTS metric.
# Requirements: python >= 3.6, tensorflow-gpu >= 1.15
import tensorflow.compat.v1 as tf
import numpy as np
import time
import scipy.io as scio
from PIL import Image
import argparse
# tf.enable_eager_execution()
tf.disable_eager_execution()
class DISTS():
def __init__(self):
self.parameters = scio.loadmat('../weights/net_param.mat')
self.chns = [3,64,128,256,512,512]
self.mean = tf.constant(self.parameters['vgg_mean'], dtype=tf.float32, shape=(1,1,1,3),name="img_mean")
self.std = tf.constant(self.parameters['vgg_std'], dtype=tf.float32, shape=(1,1,1,3),name="img_std")
# self.alpha = tf.Variable(tf.random_normal(shape=(1,1,1,sum(self.chns)), mean=0.1, stddev=0.01),name="alpha")
# self.beta = tf.Variable(tf.random_normal(shape=(1,1,1,sum(self.chns)), mean=0.1, stddev=0.01),name="beta")
self.weights = scio.loadmat('../weights/alpha_beta.mat')
self.alpha = tf.constant(np.reshape(self.weights['alpha'],(1,1,1,sum(self.chns))),name="alpha")
self.beta = tf.constant(np.reshape(self.weights['beta'],(1,1,1,sum(self.chns))),name="beta")
def get_features(self, img):
x = (img - self.mean)/self.std
self.conv1_1 = self.conv_layer(x, "conv1_1")
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self.pool_layer(self.conv1_2, name="pool_1")
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.pool_layer(self.conv2_2, name="pool_2")
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self.pool_layer(self.conv3_3, name="pool_3")
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self.pool_layer(self.conv4_3, name="pool_4")
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
return [img, self.conv1_2,self.conv2_2,self.conv3_3,self.conv4_3,self.conv5_3]
def conv_layer(self, input, name):
with tf.variable_scope(name) as _:
filter = self.get_conv_filter(name)
conv = tf.nn.conv2d(input, filter, strides=1, padding="SAME")
bias = self.get_bias(name)
conv = tf.nn.relu(tf.nn.bias_add(conv, bias))
return conv
def pool_layer(self, input, name):
# return tf.nn.max_pool(input, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
with tf.variable_scope(name) as _:
filter = tf.squeeze(tf.constant(self.parameters['L2'+name], name = "filter"),3)
conv = tf.nn.conv2d(input**2, filter, strides=2, padding=[[0, 0], [1, 0], [1, 0], [0, 0]])
return tf.sqrt(tf.maximum(conv, 1e-12))
def get_conv_filter(self, name):
return tf.constant(self.parameters[name+'_weight'], name = "filter")
def get_bias(self, name):
return tf.constant(np.squeeze(self.parameters[name+'_bias']), name = "bias")
def get_score(self, img1, img2):
feats0 = self.get_features(img1)
feats1 = self.get_features(img2)
dist1 = 0
dist2 = 0
c1 = 1e-6
c2 = 1e-6
w_sum = tf.reduce_sum(self.alpha) + tf.reduce_sum(self.beta)
alpha = tf.split(self.alpha/w_sum, self.chns, axis=3)
beta = tf.split(self.beta/w_sum, self.chns, axis=3)
for k in range(len(self.chns)):
x_mean = tf.reduce_mean(feats0[k],[1,2], keepdims=True)
y_mean = tf.reduce_mean(feats1[k],[1,2], keepdims=True)
S1 = (2*x_mean*y_mean+c1)/(x_mean**2+y_mean**2+c1)
dist1 = dist1+tf.reduce_sum(alpha[k]*S1, 3, keepdims=True)
x_var = tf.reduce_mean((feats0[k]-x_mean)**2,[1,2], keepdims=True)
y_var = tf.reduce_mean((feats1[k]-y_mean)**2,[1,2], keepdims=True)
xy_cov = tf.reduce_mean(feats0[k]*feats1[k],[1,2], keepdims=True) - x_mean*y_mean
S2 = (2*xy_cov+c2)/(x_var+y_var+c2)
dist2 = dist2+tf.reduce_sum(beta[k]*S2, 3, keepdims=True)
dist = 1-tf.squeeze(dist1+dist2)
return dist
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ref', type=str, default='../images/r0.png')
parser.add_argument('--dist', type=str, default='../images/r1.png')
args = parser.parse_args()
model = DISTS()
ref = np.array(Image.open(args.ref).convert("RGB"))
ref = np.expand_dims(ref,axis=0)/255.
dist = np.array(Image.open(args.dist).convert("RGB"))
dist = np.expand_dims(dist,axis=0)/255.
x = tf.placeholder(dtype=tf.float32, shape=ref.shape, name= "ref")
y = tf.placeholder(dtype=tf.float32, shape=dist.shape, name= "dist")
score = model.get_score(x,y)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
score = sess.run(score, feed_dict={x: ref, y: dist})
print(score)