forked from haitongli/knowledge-distillation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
170 lines (132 loc) · 6.48 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Evaluates the model"""
import argparse
import logging
import os
import numpy as np
import torch
from torch.autograd import Variable
import utils
import model.net as net
import model.resnet as resnet
import model.data_loader as data_loader
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='experiments/base_model', help="Directory of params.json")
parser.add_argument('--restore_file', default='best', help="name of the file in --model_dir \
containing weights to load")
def evaluate(model, loss_fn, dataloader, metrics, params):
"""Evaluate the model on `num_steps` batches.
Args:
model: (torch.nn.Module) the neural network
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to evaluation mode
model.eval()
# summary for current eval loop
summ = []
# compute metrics over the dataset
for data_batch, labels_batch in dataloader:
# move to GPU if available
if params.cuda:
data_batch, labels_batch = data_batch.cuda(async=True), labels_batch.cuda(async=True)
# fetch the next evaluation batch
data_batch, labels_batch = Variable(data_batch), Variable(labels_batch)
# compute model output
output_batch = model(data_batch)
loss = loss_fn(output_batch, labels_batch)
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric: metrics[metric](output_batch, labels_batch)
for metric in metrics}
summary_batch['loss'] = loss.data[0]
summ.append(summary_batch)
# compute mean of all metrics in summary
metrics_mean = {metric:np.mean([x[metric] for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Eval metrics : " + metrics_string)
return metrics_mean
"""
This function duplicates "evaluate()" but ignores "loss_fn" simply for speedup purpose.
Validation loss during KD mode would display '0' all the time.
One can bring that info back by using the fetched teacher outputs during evaluation (refer to train.py)
"""
def evaluate_kd(model, dataloader, metrics, params):
"""Evaluate the model on `num_steps` batches.
Args:
model: (torch.nn.Module) the neural network
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to evaluation mode
model.eval()
# summary for current eval loop
summ = []
# compute metrics over the dataset
for i, (data_batch, labels_batch) in enumerate(dataloader):
# move to GPU if available
if params.cuda:
data_batch, labels_batch = data_batch.cuda(async=True), labels_batch.cuda(async=True)
# fetch the next evaluation batch
data_batch, labels_batch = Variable(data_batch), Variable(labels_batch)
# compute model output
output_batch = model(data_batch)
# loss = loss_fn_kd(output_batch, labels_batch, output_teacher_batch, params)
loss = 0.0 #force validation loss to zero to reduce computation time
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric: metrics[metric](output_batch, labels_batch)
for metric in metrics}
# summary_batch['loss'] = loss.data[0]
summary_batch['loss'] = loss
summ.append(summary_batch)
# compute mean of all metrics in summary
metrics_mean = {metric:np.mean([x[metric] for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Eval metrics : " + metrics_string)
return metrics_mean
# if __name__ == '__main__':
# """
# Evaluate the model on a dataset for one pass.
# """
# # Load the parameters
# args = parser.parse_args()
# json_path = os.path.join(args.model_dir, 'params.json')
# assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
# params = utils.Params(json_path)
# # use GPU if available
# params.cuda = torch.cuda.is_available() # use GPU is available
# # Set the random seed for reproducible experiments
# torch.manual_seed(230)
# if params.cuda: torch.cuda.manual_seed(230)
# # Get the logger
# utils.set_logger(os.path.join(args.model_dir, 'evaluate.log'))
# # Create the input data pipeline
# logging.info("Loading the dataset...")
# # fetch dataloaders
# # train_dl = data_loader.fetch_dataloader('train', params)
# dev_dl = data_loader.fetch_dataloader('dev', params)
# logging.info("- done.")
# # Define the model graph
# model = resnet.ResNet18().cuda() if params.cuda else resnet.ResNet18()
# optimizer = optim.SGD(model.parameters(), lr=params.learning_rate,
# momentum=0.9, weight_decay=5e-4)
# # fetch loss function and metrics
# loss_fn_kd = net.loss_fn_kd
# metrics = resnet.metrics
# logging.info("Starting evaluation...")
# # Reload weights from the saved file
# utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)
# # Evaluate
# test_metrics = evaluate_kd(model, dev_dl, metrics, params)
# save_path = os.path.join(args.model_dir, "metrics_test_{}.json".format(args.restore_file))
# utils.save_dict_to_json(test_metrics, save_path)