-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.py
162 lines (117 loc) · 4.97 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
import torch
import torch.nn as nn
from tqdm import tqdm
from tensorboardX import SummaryWriter
def train_epoch(epoch, model, loader, device, criterion, optimizer, scheduler, writer):
model.train()
running_loss = 0
with tqdm(total=len(loader), file=sys.stdout) as pbar:
for iter_no, (imgs, gts) in enumerate(loader):
imgs = imgs.to(device)
gts = gts.to(device)
optimizer.zero_grad()
results = model(imgs)
losses = criterion(results, gts)
losses.backward()
optimizer.step()
running_loss += losses.item()
writer.add_scalar(
'train/loss',
losses.item(),
epoch*len(loader)+iter_no
)
pbar.update(1)
scheduler.step()
return running_loss/len(loader)
def eval(epoch, model, loader, criterion, device, writer, metric=None):
model.eval()
running_loss = 0.
running_metric = 0.
with torch.no_grad():
with tqdm(total=len(loader), file=sys.stdout) as pbar:
for iter_no, (imgs, gts) in enumerate(loader):
imgs = imgs.to(device)
gts = gts.to(device)
results = model(imgs)
losses = criterion(results, gts)
running_loss += losses.item()
# be ware torch.max is overloaded
preds = torch.max(nn.functional.softmax(results, dim=1), 1)[1]
preds = preds.cpu().view(-1).numpy()
gts = gts.cpu().squeeze().view(-1).numpy()
if metric is not None:
m = metric(gts, preds)
running_metric += m
pbar.update(1)
if metric is not None:
writer.add_scalar(
'val/metric',
running_metric/len(loader),
epoch
)
return running_loss/len(loader)
def train(name, train_id, model, device, train_loader, val_loader, criterion, optimizer, scheduler, epochs=100, log_path='./logs', metric=None):
writer = SummaryWriter(os.path.join(log_path, '{}_{}'.format(name, train_id)))
for epoch in range(epochs):
train_loss = train_epoch(epoch, model, train_loader, device, criterion, optimizer, scheduler, writer)
eval_loss = eval(epoch, model, val_loader, criterion, device, writer, metric)
writer.add_scalars(
'avg/loss',
{
'train': train_loss,
'val': eval_loss
},
epoch
)
model_path = os.path.join('./models', '{}_{}'.format(name, train_id))
if not os.path.exists(model_path):
os.makedirs(model_path)
print('epoch: {}, train_loss: {}, eval_loss: {}'.format(epoch, train_loss, eval_loss))
torch.save(model.state_dict(), os.path.join(model_path, '{:0>3d}.pth'.format(epoch)))
writer.close()
# input ndarray image
def slice_infer(model, device, img, slice_size):
model.eval()
h, w, c = img.shape
scores = []
with torch.no_grad():
for i in range(w//slice_size):
for j in range(h//slice_size):
data = img[
i*slice_size:(i+1)*slice_size-1,
j*slice_size:(j+1)*slice_size-1,
:
]
data_tensor = torch.from_numpy(data).to(device)
result = model(data_tensor)
score = nn.functional.softmax(result, -1)[-1]
scores.append(score.item())
return scores
def slice_gt(mask, slice_size, neg_thres, pos_thres):
h, w = mask.shape
gts = []
for i in range(w//slice_size):
for j in range(h//slice_size):
mask_slice = mask[
i*slice_size:(i+1)*slice_size-1,
j*slice_size:(j+1)*slice_size-1
]
total_pixels = mask_slice.shape[0] * mask_slice.shape[1]
pixel_count = cv2.countNonZero(mmask_slice)
ratio = pixel_count / total_pixels
if ratio < self.neg_thres:
gts.append(False)
elif ratio > self.pos_thres:
gts.append(True)
return gts
def infer(model, device, img, slice_size, score_threshold=0.5):
scores = slice_infer(model, device, img, slice_size)
results = torch.gt(scores, score_threshold)
count, = torch.nonzero(results).shape
return 1 if count > 0 else 0
def test(model, device, imgs, gts, slice_size, score_threshold=0.5):
results = [infer(model, device, img.to(device), slice_size, score_threshold) for img in imgs]
accu = metrics.accuracy_score(gts, preds)
print(accu)