-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo_hierachical_everything.py
44 lines (34 loc) · 1.13 KB
/
demo_hierachical_everything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
ax.imshow(img)
import sys
sys.path.append("..")
from tinysam import sam_model_registry, SamHierarchicalMaskGenerator
model_type = "vit_t"
sam = sam_model_registry[model_type](checkpoint="./weights/tinysam.pth")
device = "cuda" if torch.cuda.is_available() else "cpu"
sam.to(device=device)
sam.eval()
mask_generator = SamHierarchicalMaskGenerator(sam)
image = cv2.imread('fig/picture2.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = mask_generator.hierarchical_generate(image)
plt.figure(figsize=(20,20))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.savefig("test_everthing.png")