-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathresult_extractor.py
203 lines (139 loc) · 5.95 KB
/
result_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import json
import time
import glob
import numpy as np
import pandas as pd
path = './savemodel2/InceptBackbone/'
dataset_list = os.listdir(path)
outpath ='savemodel2_csv/' #savemodel5_
os.makedirs(outpath,exist_ok=True)
# dataset_list =['Handwriting']
for dataset_name in dataset_list:
print(dataset_name)
dataset_path = path + dataset_name
exp_list = os.listdir(dataset_path)
df_list = []
for exp in exp_list:
print(' '+exp)
exp_path = os.path.join(dataset_path, exp)
'''
option.txt
'''
option_txt = glob.glob(os.path.join(exp_path, '*.txt'))[0]
with open(option_txt, 'r') as file:
lines = file.readlines()
data_dict = {}
for line in lines:
parts = line.strip().split(': ')
if len(parts) == 2:
key, value = parts
data_dict[key] = [value]
df = pd.DataFrame(data_dict)
df.index = [exp]
# df = df.rename_axis(exp)
# df = df.transpose()
# df.reset_index(inplace=True)
# df.columns = ['Parameters', 'Value']
# Print the DataFrame
# print(df)
'''
Train_log.log
'''
Train_log = glob.glob(os.path.join(exp_path, '*.log'))[0]
data = []
with open(Train_log, 'r') as file:
lines = file.readlines()
for i in range(len(lines)):
if "Best model saved at:" in lines[i]:
# if True:
info_line = lines[i].strip() # Remove leading/trailing whitespace
info_parts = info_line.split("Best model saved at: ")[1]
data_parts = info_parts.split(" Epoch ")[0].split(" test loss: ")
print([i])
params = lines[i-1]
print(lines[i])
parts = params.strip().split()
# for j in range(len(parts)):
# print(j, parts[j])
print(parts)
epoch = int(parts[1].split('/')[0].split('[')[1])
# total_epochs = int(parts[2].split('/')[1].split(']')[0])
train_loss = float(parts[4])
test_loss = float(parts[7][:-1]) # Remove the trailing comma
parts[1:]=parts[:-1]
average_score = float(parts[10][:-1]) # Remove the trailing comma
bal_average = float(parts[14][:-1])
f1_marco = float(parts[17])
f1_mirco = float(parts[20])
p_marco = float(parts[23])
p_mirco = float(parts[26])
r_marco = float(parts[29])
r_mirco = float(parts[32])
roc_auc_ovo_marco = float(parts[36])
roc_auc_ovo_mirco = float(parts[40])
roc_auc_ovr_marco = float(parts[44])
roc_auc_ovr_mirco = 0.#float(parts[48])
info_dict = {
"Best model": 'yes',
"Epoch": epoch,
"Train Loss": train_loss,
"Test Loss": test_loss,
"Average Score": average_score,
"bal_average": bal_average,
"f1_marco": f1_marco,
"f1_mirco": f1_mirco,
"p_marco": p_marco,
"p_mirco": p_mirco,
"r_marco": r_marco,
"r_mirco": r_mirco,
"roc_auc_ovo_marco": roc_auc_ovo_marco,
"roc_auc_ovo_mirco": roc_auc_ovo_mirco,
"roc_auc_ovr_marco": roc_auc_ovr_marco,
"roc_auc_ovr_mirco": roc_auc_ovr_mirco,
}
data.append(info_dict)
Train_log_df = pd.DataFrame(data)
# Print the DataFrame
# print(Train_log_df)
best_model_df = pd.DataFrame([info_dict])
best_model_df.index = [exp]
# best_model_df = best_model_df.transpose()
# best_model_df.reset_index(inplace=True)
# best_model_df.columns = ['Parameters', 'Value']
# print(best_model_df)
df = pd.concat([best_model_df, df], axis=1)
# df.reset_index(drop=True, inplace=True)
# print(df)
globals()[exp] = df
df_list.append(globals()[exp])
# if len(exp_list) > 1:
df = pd.concat(df_list)
# df = df.sort_index()
selected_columns = [
'Average Score',
'batchsize',
'dropout_patch',
'epoch_des',
'dropout_node',
'Train Loss',
'Test Loss',
'Epoch',
"bal_average",
"f1_marco",
"f1_mirco",
"p_marco",
"p_mirco",
"r_marco",
"r_mirco",
"roc_auc_ovo_marco",
"roc_auc_ovo_mirco",
"roc_auc_ovr_marco",
"roc_auc_ovr_mirco",]
df = df[selected_columns]
df = df.sort_values(by=['Average Score', 'batchsize'])
# df.to_excel('csv/'+dataset_name+'_params_'+'.xlsx', index=True)
df.to_csv(outpath+dataset_name+'_params_'+'.csv', index=True)
# with pd.ExcelWriter(dataset_name+'_params_'+'.xlsx', engine='openpyxl') as writer:
# for exp_name in exp_list:
# globals()[exp_name].to_excel(writer, sheet_name=exp_name, index=False)