forked from Velcon-Zheng/DL-mo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunCancerDNN.py
375 lines (342 loc) · 15.9 KB
/
runCancerDNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import numpy as np
from sklearn.preprocessing import normalize
from keras.layers import Input, Dense,concatenate,Dropout,average
from keras.models import Model
from keras import backend as K
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score
import numpy as np
from sklearn.model_selection import StratifiedKFold
from keras.layers import Input, Dense,concatenate,Dropout,average
from keras.models import Model
import keras
from sklearn.metrics import classification_report
#训练三个神经网络
def build_NN_model1(omics):
omics1=omics[0]
omics2=omics[1]
omics3=omics[2]
input1_dim=omics1.shape[1]
input2_dim = omics2.shape[1]
input3_dim = omics3.shape[1]
class_num = 4
#omics1
input_factor1 = Input(shape=(input1_dim,),name='omics1')
# NN
omics1_nn = Dense(500, activation='relu')(input_factor1)
omics1_nn = Dropout(0.1)(omics1_nn)
# omics1_nn = Dense(500, activation='relu')(omics1_nn)
# omics1_nn = Dropout(0.1)(omics1_nn)
omics1_nn = Dense(100, activation='relu')(omics1_nn)
omics1_nn = Dropout(0.1)(omics1_nn)
# omics2
input_factor2 = Input(shape=(input2_dim,), name='omics2')
# NN
omics2_nn = Dense(500, activation='relu')(input_factor2)
omics2_nn = Dropout(0.1)(omics2_nn)
# omics2_nn = Dense(100, activation='relu')(omics2_nn)
# omics2_nn = Dropout(0.1)(omics2_nn)
omics2_nn = Dense(100, activation='relu')(omics2_nn)
omics2_nn = Dropout(0.1)(omics2_nn)
# omics3
input_factor3 = Input(shape=(input3_dim,), name='omics3')
# NN
omics3_nn = Dense(500, activation='relu')(input_factor2)
omics3_nn = Dropout(0.1)(omics3_nn)
# omics3_nn = Dense(100, activation='relu')(omics3_nn)
# omics3_nn = Dropout(0.1)(omics3_nn)
omics3_nn = Dense(100, activation='relu')(omics3_nn)
omics3_nn = Dropout(0.1)(omics3_nn)
mid_concat=concatenate([omics1_nn, omics2_nn, omics3_nn])
# classifier
nn_classifier = Dense(100, activation='relu')(mid_concat)
nn_classifier=Dropout(0.1)(nn_classifier)
nn_classifier = Dense(50, activation='relu')(nn_classifier)
nn_classifier = Dropout(0.1)(nn_classifier)
# nn_classifier = Dense(50, activation='relu')(nn_classifier)
# nn_classifier = Dropout(0.1)(nn_classifier)
nn_classifier = Dense(10, activation='relu')(nn_classifier)
#nn_classifier = Dropout(0.1)(nn_classifier)
nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier)
my_metrics = {
'classifier': ['acc']
}
my_loss = {
'classifier': 'categorical_crossentropy', \
}
adam=keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
zlyNN = Model(inputs=[input_factor1,input_factor2,input_factor3], outputs=nn_classifier)
zlyNN.compile(optimizer=adam, loss=my_loss, metrics=my_metrics)
return zlyNN
def build_NN_model2(omics,class_num):
input_dim=omics.shape[1]
#class_num = 5
#omics1
input_factor1 = Input(shape=(input_dim,),name='omics')
# NN
omics1_nn = Dense(500, activation='relu')(input_factor1)
omics1_nn = Dropout(0.1)(omics1_nn)
omics1_nn = Dense(100, activation='relu')(omics1_nn)
omics1_nn = Dropout(0.1)(omics1_nn)
# omics1_nn1 = Dense(100, activation='relu')(omics1_nn1)
# omics1_nn1 = Dropout(0.1)(omics1_nn1)
# omics1_nn = Dense(10, activation='relu')(omics1_nn)
# omics1_nn = Dropout(0.1)(omics1_nn)
# omics1_nn = average([omics1_nn1,omics1_nn])
# omics1_nn = Dense(100, activation='relu')(omics1_nn)
# omics1_nn = Dropout(0.1)(omics1_nn)
nn_classifier = Dense(50, activation='relu')(omics1_nn)
# nn_classifier = Dropout(0.1)(nn_classifier)
if class_num==2:
nn_classifier = Dense(1, activation='sigmoid', name='classifier')(nn_classifier)
else:
nn_classifier = Dense(class_num, activation='softmax', name='classifier')(nn_classifier)
my_metrics_multi = {
'classifier': ['acc']
}
my_loss_multi = {
'classifier': 'categorical_crossentropy', \
}
my_metrics_bi = {
'classifier': ['acc']
}
my_loss_bi = {
'classifier': 'binary_crossentropy', \
}
# compile autoencoder
# self.autoencoder.compile(optimizer='adam', loss='mse')
zlyNN = Model(inputs=[input_factor1], outputs=nn_classifier)
if class_num==2:
zlyNN.compile(optimizer='adam', loss=my_loss_bi, metrics=my_metrics_bi)
else:
zlyNN.compile(optimizer='adam', loss=my_loss_multi, metrics=my_metrics_multi)
return zlyNN
if __name__ == '__main__':
# files = ['breast2']
# # files = ['gbm']
# for f in files:
# datapath='./data/cancer_d2d/{f}'.format(f=f)
# omics1 = np.loadtxt('{}/after_log_exp.txt'.format(datapath),str)
# omics1 = np.delete(omics1, 0, axis=1)
# #omics1 = np.transpose(omics1)
# omics1 = omics1.astype(np.float)
# omics1 = normalize(omics1, axis=0, norm='max')
# print(omics1.shape)
# omics2 = np.loadtxt('{}/after_log_mirna.txt'.format(datapath),str)
# omics2= np.delete(omics2, 0, axis=1)
# #omics2 = np.transpose(omics2)
# omics2 = omics2.astype(np.float)
# omics2 = normalize(omics2, axis=0, norm='max')
# print(omics2.shape)
# omics3 = np.loadtxt('{}/after_methy.txt'.format(datapath),str)
# omics3= np.delete(omics3,0,axis=1)
# #omics3 = np.transpose(omics3)
# omics3 = omics3.astype(np.float)
# omics3 = normalize(omics3, axis=0, norm='max')
# print(omics3.shape)
# labels = np.loadtxt('{datapath}/after_labels.txt'.format(datapath=datapath), str)
# labels = np.delete(labels, 0, axis=1)
# labels = labels.astype(np.int)
# labels = np.squeeze(labels,axis=1)
# # k折交叉验证
# all_acc = []
# all_f1_macro = []
# all_f1_weighted = []
# all_auc_macro = []
# all_auc_weighted = []
# #omics = np.loadtxt('./result/nmf/mf_em.txt')
# omics = np.concatenate((omics1, omics2, omics3), axis=1)
# #labels = np.loadtxt('./data/BRCA/labels_all.csv', delimiter=',')
# # data=np.concatenate([])
# kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
# for train_ix, test_ix in kfold.split(omics, labels):
# # select rows
# train_X, test_X = omics[train_ix], omics[test_ix]
# train_y, test_y = labels[train_ix], labels[test_ix]
# # summarize train and test composition
# unique, count = np.unique(train_y, return_counts=True)
# train_data_count = dict(zip(unique, count))
# print('train:' + str(train_data_count))
# unique, count = np.unique(test_y, return_counts=True)
# test_data_count = dict(zip(unique, count))
# print('test:' + str(test_data_count))
# # 多分类的输出
# train_y = list(np.int_(train_y))
# # groundtruth = np.int_(groundtruth)
# y = []
# num = len(train_y)
# for i in range(num):
# tmp = np.zeros(4, dtype='uint8')
# tmp[train_y[i]] = 1
# y.append(tmp)
# train_y = np.array(y)
# test_y = list(np.int_(test_y))
# # groundtruth = np.int_(groundtruth)
# y = []
# num = len(test_y)
# for i in range(num):
# tmp = np.zeros(4, dtype='uint8')
# tmp[test_y[i]] = 1
# y.append(tmp)
# test_y = np.array(y)
# model = build_NN_model2(omics, 4)
# history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=8, shuffle=True,
# validation_data=(test_X, test_y))
# y_true = []
# for i in range(len(test_y)):
# y_true.append(np.argmax(test_y[i]))
# predictions = model.predict(test_X)
# y_pred = []
# for i in range(len(predictions)):
# y_pred.append(np.argmax(predictions[i]))
# acc = accuracy_score(y_true, y_pred)
# f1_macro = f1_score(y_true, y_pred, average='macro')
# # f1_micro=f1_score(y_true, y_pred, average='micro')
# f1_weighted = f1_score(y_true, y_pred, average='weighted')
# auc_macro = roc_auc_score(y_true, predictions, multi_class='ovr', average='macro')
# auc_weighted = roc_auc_score(y_true, predictions, multi_class='ovr', average='weighted')
# all_acc.append(acc)
# all_f1_macro.append(f1_macro)
# all_f1_weighted.append(f1_weighted)
# all_auc_macro.append(auc_macro)
# all_auc_weighted.append(auc_weighted)
# print(classification_report(y_true, y_pred))
# print(acc, f1_macro, f1_weighted, auc_macro, auc_weighted)
# # print_precison_recall_f1(y_true, y_pred)
# print('caicai' * 20)
# print(
# 'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\nauc_macro:{all_auc_macro}\nauc_weighted:{all_auc_weighted}'. \
# format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted,
# all_auc_macro=all_auc_macro, all_auc_weighted=all_auc_weighted))
# avg_acc = np.mean(all_acc)
# avg_f1_macro = np.mean(all_f1_macro)
# avg_f1_weighted = np.mean(all_f1_weighted)
# avg_auc_macro = np.mean(all_auc_macro)
# avg_auc_weighted = np.mean(all_auc_weighted)
# print(
# 'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\nauc_macro:{avg_auc_macro}\nauc_weighted:{avg_auc_weighted}'. \
# format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted,
# avg_auc_macro=avg_auc_macro, avg_auc_weighted=avg_auc_weighted))
#files = ['breast2']
files = ['gbm']
for f in files:
datapath='./data/cancer_d2d/{f}'.format(f=f)
omics1 = np.loadtxt('{}/after_log_exp.txt'.format(datapath),str)
omics1 = np.delete(omics1, 0, axis=1)
#omics1 = np.transpose(omics1)
omics1 = omics1.astype(np.float)
omics1 = normalize(omics1, axis=0, norm='max')
print(omics1.shape)
omics2 = np.loadtxt('{}/after_log_mirna.txt'.format(datapath),str)
omics2= np.delete(omics2, 0, axis=1)
#omics2 = np.transpose(omics2)
omics2 = omics2.astype(np.float)
omics2 = normalize(omics2, axis=0, norm='max')
print(omics2.shape)
omics3 = np.loadtxt('{}/after_methy.txt'.format(datapath),str)
omics3= np.delete(omics3,0,axis=1)
#omics3 = np.transpose(omics3)
omics3 = omics3.astype(np.float)
omics3 = normalize(omics3, axis=0, norm='max')
print(omics3.shape)
labels = np.loadtxt('{datapath}/after_labels.txt'.format(datapath=datapath), str)
labels = np.delete(labels, 0, axis=1)
labels = labels.astype(np.int)
labels = np.squeeze(labels,axis=1)
# datapath = 'data/BRCA'
# omics1 = np.loadtxt('{}/1_all.csv'.format(datapath),delimiter=',')
# #omics1 = np.transpose(omics1)
# omics1 = normalize(omics1, axis=0, norm='max')
# omics2 = np.loadtxt('{}/2_all.csv'.format(datapath),delimiter=',')
# #omics2 = np.transpose(omics2)
# omics2 = normalize(omics2, axis=0, norm='max')
# omics3 = np.loadtxt('{}/3_all.csv'.format(datapath),delimiter=',')
# #omics3 = np.transpose(omics3)
# omics3 = normalize(omics3, axis=0, norm='max')
# k折交叉验证
all_acc = []
all_f1_macro = []
all_f1_weighted = []
all_auc_macro = []
all_auc_weighted = []
#omics = np.loadtxt('./result/nmf/mf_em.txt')
omics = np.concatenate((omics1, omics2, omics3), axis=1)
# labels = np.loadtxt('./data/BRCA/labels_all.csv', delimiter=',')
# data=np.concatenate([])
kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
for train_ix, test_ix in kfold.split(omics1, labels):
omics_tobuild=[omics1,omics2,omics3]
train_X_1=omics1[train_ix]
train_X_2=omics2[train_ix]
train_X_3=omics3[train_ix]
test_X_1=omics1[test_ix]
test_X_2=omics2[test_ix]
test_X_3=omics3[test_ix]
# select rows
train_X, test_X = [train_X_1,train_X_2,train_X_3],[test_X_1,test_X_2,test_X_3]
#train_X, test_X = (train_X_1,train_X_2,train_X_3),(test_X_1,test_X_2,test_X_3)
train_y, test_y = labels[train_ix], labels[test_ix]
# summarize train and test composition
unique, count = np.unique(train_y, return_counts=True)
train_data_count = dict(zip(unique, count))
print('train:' + str(train_data_count))
unique, count = np.unique(test_y, return_counts=True)
test_data_count = dict(zip(unique, count))
print('test:' + str(test_data_count))
class_num=4
# 多分类的输出
train_y = list(np.int_(train_y))
# groundtruth = np.int_(groundtruth)
y = []
num = len(train_y)
for i in range(num):
tmp = np.zeros(class_num, dtype='uint8')
tmp[train_y[i]] = 1
y.append(tmp)
train_y = np.array(y)
test_y = list(np.int_(test_y))
# groundtruth = np.int_(groundtruth)
y = []
num = len(test_y)
for i in range(num):
tmp = np.zeros(class_num, dtype='uint8')
tmp[test_y[i]] = 1
y.append(tmp)
test_y = np.array(y)
model = build_NN_model1(omics_tobuild)
history = model.fit(train_X, train_y, epochs=50, verbose=2, batch_size=16, shuffle=True,
validation_data=(test_X, test_y))
y_true = []
for i in range(len(test_y)):
y_true.append(np.argmax(test_y[i]))
predictions = model.predict(test_X)
y_pred = []
for i in range(len(predictions)):
y_pred.append(np.argmax(predictions[i]))
acc = accuracy_score(y_true, y_pred)
f1_macro = f1_score(y_true, y_pred, average='macro')
# f1_micro=f1_score(y_true, y_pred, average='micro')
f1_weighted = f1_score(y_true, y_pred, average='weighted')
auc_macro = roc_auc_score(y_true, predictions, multi_class='ovr', average='macro')
auc_weighted = roc_auc_score(y_true, predictions, multi_class='ovr', average='weighted')
all_acc.append(acc)
all_f1_macro.append(f1_macro)
all_f1_weighted.append(f1_weighted)
all_auc_macro.append(auc_macro)
all_auc_weighted.append(auc_weighted)
print(classification_report(y_true, y_pred))
print(acc, f1_macro, f1_weighted, auc_macro, auc_weighted)
# print_precison_recall_f1(y_true, y_pred)
print('caicai' * 20)
print(
'acc:{all_acc}\nf1_macro:{all_f1_macro}\nf1_weighted:{all_f1_weighted}\nauc_macro:{all_auc_macro}\nauc_weighted:{all_auc_weighted}'. \
format(all_acc=all_acc, all_f1_macro=all_f1_macro, all_f1_weighted=all_f1_weighted,
all_auc_macro=all_auc_macro, all_auc_weighted=all_auc_weighted))
avg_acc = np.mean(all_acc)
avg_f1_macro = np.mean(all_f1_macro)
avg_f1_weighted = np.mean(all_f1_weighted)
avg_auc_macro = np.mean(all_auc_macro)
avg_auc_weighted = np.mean(all_auc_weighted)
print(
'acc:{avg_acc}\nf1_macro:{avg_f1_macro}\nf1_weighted:{avg_f1_weighted}\nauc_macro:{avg_auc_macro}\nauc_weighted:{avg_auc_weighted}'. \
format(avg_acc=avg_acc, avg_f1_macro=avg_f1_macro, avg_f1_weighted=avg_f1_weighted,
avg_auc_macro=avg_auc_macro, avg_auc_weighted=avg_auc_weighted))