forked from ttb-git/Stanford-cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvsm.py
446 lines (344 loc) · 11.7 KB
/
vsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import scipy
import scipy.spatial.distance
from scipy.stats import spearmanr
import torch
import utils
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2022"
def euclidean(u, v):
return scipy.spatial.distance.euclidean(u, v)
def vector_length(u):
return np.sqrt(u.dot(u))
def length_norm(u):
return u / vector_length(u)
def cosine(u, v):
return scipy.spatial.distance.cosine(u, v)
def matching(u, v):
return np.sum(np.minimum(u, v))
def jaccard(u, v):
return 1.0 - (matching(u, v) / np.sum(np.maximum(u, v)))
def neighbors(word, df, distfunc=cosine):
"""
Tool for finding the nearest neighbors of `word` in `df` according
to `distfunc`. The comparisons are between row vectors.
Parameters
----------
word : str
The anchor word. Assumed to be in `rownames`.
df : pd.DataFrame
The vector-space model.
distfunc : function mapping vector pairs to floats (default: `cosine`)
The measure of distance between vectors. Can also be `euclidean`,
`matching`, `jaccard`, as well as any other distance measure
between 1d vectors.
Raises
------
ValueError
If word is not in `df.index`.
Returns
-------
pd.Series
Ordered by closeness to `word`.
"""
if word not in df.index:
raise ValueError('{} is not in this VSM'.format(word))
w = df.loc[word]
dists = df.apply(lambda x: distfunc(w, x), axis=1)
return dists.sort_values()
def observed_over_expected(df):
col_totals = df.sum(axis=0)
total = col_totals.sum()
row_totals = df.sum(axis=1)
expected = np.outer(row_totals, col_totals) / total
oe = df / expected
return oe
def pmi(df, positive=True):
df = observed_over_expected(df)
# Silence distracting warnings about log(0):
with np.errstate(divide='ignore'):
df = np.log(df)
df[np.isinf(df)] = 0.0 # log(0) = 0
if positive:
df[df < 0] = 0.0
return df
def tfidf(df):
# Inverse document frequencies:
doccount = float(df.shape[1])
freqs = df.astype(bool).sum(axis=1)
idfs = np.log(doccount / freqs)
idfs[np.isinf(idfs)] = 0.0 # log(0) = 0
# Term frequencies:
col_totals = df.sum(axis=0)
tfs = df / col_totals
return (tfs.T * idfs).T
def ngram_vsm(df, n=2):
"""Create a character-level VSM from `df`.
Parameters
----------
df : pd.DataFrame
n : int
The n-gram size.
Returns
-------
pd.DataFrame
This will have the same column dimensionality as `df`, but the
rows will be expanded with representations giving the sum of
all the original rows in `df` that contain that row's n-gram.
"""
unigram2vecs = defaultdict(list)
for w, x in df.iterrows():
for c in get_character_ngrams(w, n):
unigram2vecs[c].append(x)
unigram2vecs = {c: np.array(x).sum(axis=0)
for c, x in unigram2vecs.items()}
cf = pd.DataFrame(unigram2vecs).T
cf.columns = df.columns
return cf
def get_character_ngrams(w, n):
"""Map a word to its character-level n-grams, with boundary
symbols '<w>' and '</w>'.
Parameters
----------
w : str
n : int
The n-gram size.
Returns
-------
list of str
"""
if n > 1:
w = ["<w>"] + list(w) + ["</w>"]
else:
w = list(w)
return ["".join(w[i: i+n]) for i in range(len(w)-n+1)]
def character_level_rep(word, cf, n=4):
"""Get a representation for `word` as the sum of all the
representations of `n`grams that it contains, according to `cf`.
Parameters
----------
word : str
The word to represent.
cf : pd.DataFrame
The character-level VSM (e.g, the output of `ngram_vsm`).
n : int
The n-gram size.
Returns
-------
np.array
"""
ngrams = get_character_ngrams(word, n)
ngrams = [n for n in ngrams if n in cf.index]
reps = cf.loc[ngrams].values
return reps.sum(axis=0)
def tsne_viz(df, colors=None, output_filename=None, figsize=(40, 50), random_state=None):
"""
2d plot of `df` using t-SNE, with the points labeled by `df.index`,
aligned with `colors` (defaults to all black).
Parameters
----------
df : pd.DataFrame
The matrix to visualize.
colors : list of colornames or None (default: None)
Optional list of colors for the vocab. The color names just
need to be interpretable by matplotlib. If they are supplied,
they need to have the same length as `df.index`. If `colors=None`,
then all the words are displayed in black.
output_filename : str (default: None)
If not None, then the output image is written to this location.
The filename suffix determines the image type. If `None`, then
`plt.plot()` is called, with the behavior determined by the
environment.
figsize : (int, int) (default: (40, 50))
Default size of the output in display units.
random_state : int or None
Optionally set the `random_seed` passed to `PCA` and `TSNE`.
"""
# Colors:
vocab = df.index
if not colors:
colors = ['black' for i in vocab]
# Recommended reduction via PCA or similar:
n_components = 50 if df.shape[1] >= 50 else df.shape[1]
dimreduce = PCA(n_components=n_components, random_state=random_state)
X = dimreduce.fit_transform(df)
# t-SNE:
tsne = TSNE(
n_components=2,
init='random',
learning_rate='auto',
random_state=random_state)
tsnemat = tsne.fit_transform(X)
# Plot values:
xvals = tsnemat[: , 0]
yvals = tsnemat[: , 1]
# Plotting:
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
ax.plot(xvals, yvals, marker='', linestyle='')
# Text labels:
for word, x, y, color in zip(vocab, xvals, yvals, colors):
try:
ax.annotate(word, (x, y), fontsize=8, color=color)
except UnicodeDecodeError: ## Python 2 won't cooperate!
pass
plt.axis('off')
# Output:
if output_filename:
plt.savefig(output_filename, bbox_inches='tight')
else:
plt.show()
def lsa(df, k=100):
"""
Latent Semantic Analysis using pure scipy.
Parameters
----------
df : pd.DataFrame
The matrix to operate on.
k : int (default: 100)
Number of dimensions to truncate to.
Returns
-------
pd.DataFrame
The SVD-reduced version of `df` with dimension (m x k), where
m is the rowcount of mat and `k` is either the user-supplied
k or the column count of `mat`, whichever is smaller.
"""
rowmat, singvals, colmat = np.linalg.svd(df, full_matrices=False)
singvals = np.diag(singvals)
trunc = np.dot(rowmat[:, 0:k], singvals[0:k, 0:k])
return pd.DataFrame(trunc, index=df.index)
def hf_represent(batch_ids, model, layer=-1):
"""
Encode a batch of sequences of ids using a Hugging Face
Transformer-based model `model`. The model's `forward` method is
`output_hidden_states=True`, and we get the hidden states from
`layer`.
Parameters
----------
batch_ids : iterable, shape (n_examples, n_tokens)
Sequences of indices into the model vocabulary.
model : Hugging Face transformer model
layer : int
The layer to return. This will get all the hidden states at
this layer. `layer=0` gives the embedding, and `layer=-1`
gives the final output states.
Returns
-------
Tensor of shape `(n_examples, n_tokens, n_dimensions)`
where `n_dimensions` is the dimensionality of the
Transformer model
"""
with torch.no_grad():
reps = model(batch_ids, output_hidden_states=True)
return reps.hidden_states[layer]
def hf_encode(text, tokenizer, add_special_tokens=False):
"""
Get the indices for the tokens in `text` according to `tokenizer`.
If no tokens can be obtained from `text`, then the tokenizer.unk_token`
is used as the only token.
Parameters
----------
text: str
tokenizer: Hugging Face tokenizer
add_special_tokens : bool
A Hugging Face parameter to the tokenizer.
Returns
-------
torch.Tensor of shape `(1, m)`
A batch of 1 example of `m` tokens`, where `m` is determined
by `text` and the nature of `tokenizer`.
"""
encoding = tokenizer.encode(
text,
add_special_tokens=add_special_tokens,
return_tensors='pt')
if encoding.shape[1] == 0:
text = tokenizer.unk_token
encoding = torch.tensor([[tokenizer.vocab[text]]])
return encoding
def mean_pooling(hidden_states):
"""
Get the mean along `axis=1` of a Tensor.
Parameters
----------
hidden_states : torch.Tensor, shape `(k, m, n)`
Where `k` is the number of examples, `m` is the number of vectors
for each example, and `n` is dimensionality of each vector.
Returns
-------
torch.Tensor of dimension `(k, n)`.
"""
_check_pooling_dimensionality(hidden_states)
return torch.mean(hidden_states, axis=1)
def max_pooling(hidden_states):
"""
Get the max values along `axis=1` of a Tensor.
Parameters
----------
hidden_states : torch.Tensor, shape `(k, m, n)`
Where `k` is the number of examples, `m` is the number of vectors
for each example, and `n` is dimensionality of each vector.
Raises
------
ValueError
If `hidden_states` does not have 3 dimensions.
Returns
-------
torch.Tensor of dimension `(k, n)`.
"""
_check_pooling_dimensionality(hidden_states)
return torch.amax(hidden_states, axis=1)
def min_pooling(hidden_states):
"""
Get the min values along `axis=1` of a Tensor.
Parameters
----------
hidden_states : torch.Tensor, shape `(k, m, n)`
Where `k` is the number of examples, `m` is the number of vectors
for each example, and `n` is dimensionality of each vector.
Raises
------
ValueError
If `hidden_states` does not have 3 dimensions.
Returns
-------
torch.Tensor of dimension `(k, n)`.
"""
_check_pooling_dimensionality(hidden_states)
return torch.amin(hidden_states, axis=1)
def last_pooling(hidden_states):
"""Get the final vector in second dimension (`axis=1`) of a Tensor.
Parameters
----------
hidden_states : torch.Tensor, shape (b, m, n)
Where b is the number of examples, m is the number of vectors
for each example, and `n` is dimensionality of each vector.
Raises
------
ValueError
If `hidden_states` does not have 3 dimensions.
Returns
-------
torch.Tensor of dimension `(k, n)`.
"""
_check_pooling_dimensionality(hidden_states)
return hidden_states[:, -1]
def _check_pooling_dimensionality(hidden_states):
if not len(hidden_states.shape) == 3:
raise ValueError(
"The input to the pooling function should have 3 dimensions: "
"it's a batch of k examples, where each example has m vectors, "
"each of dimensionality n. The function will pool the vectors "
"for each example, returning a Tensor of shape (k, n).")
def create_subword_pooling_vsm(vocab, tokenizer, model, layer=1, pool_func=mean_pooling):
vocab_ids = [hf_encode(w, tokenizer) for w in vocab]
vocab_hiddens = [hf_represent(w, model, layer=layer) for w in vocab_ids]
pooled = [pool_func(h) for h in vocab_hiddens]
pooled = [p.squeeze().cpu().numpy() for p in pooled]
return pd.DataFrame(pooled, index=vocab)