-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathes_kb_service.py
209 lines (189 loc) · 8.97 KB
/
es_kb_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from typing import List
import os
import shutil
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores.elasticsearch import ElasticsearchStore
from configs import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, VECTOR_SEARCH_TOP_K,SCORE_THRESHOLD
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from server.utils import load_local_embeddings
from elasticsearch import Elasticsearch,BadRequestError
from configs import logger
from configs import kbs_config
class ESKBService(KBService):
def do_init(self):
self.kb_path = self.get_kb_path(self.kb_name)
self.index_name = kbs_config[self.vs_type()]['index_name']
self.IP = kbs_config[self.vs_type()]['host']
self.PORT = kbs_config[self.vs_type()]['port']
self.user = kbs_config[self.vs_type()].get("user",'')
self.password = kbs_config[self.vs_type()].get("password",'')
self.dims_length = kbs_config[self.vs_type()].get("dims_length",None)
self.embeddings_model = load_local_embeddings(self.embed_model, EMBEDDING_DEVICE)
try:
# ES python客户端连接(仅连接)
if self.user != "" and self.password != "":
self.es_client_python = Elasticsearch(f"https://{self.IP}:{self.PORT}",
basic_auth=(self.user,self.password),verify_certs=False,request_timeout=30)
else:
logger.warning("ES未配置用户名和密码")
self.es_client_python = Elasticsearch(f"https://{self.IP}:{self.PORT}",verify_certs=False,request_timeout=30)
except ConnectionError:
logger.error("连接到 Elasticsearch 失败!")
raise ConnectionError
except Exception as e:
logger.error(f"Error 发生 : {e}")
raise e
try:
# langchain ES 连接、创建索引
if self.user != "" and self.password != "":
self.db_init = ElasticsearchStore(
es_url=f"https://{self.IP}:{self.PORT}",
index_name=self.index_name,
query_field="context",
vector_query_field="dense_vector",
embedding=self.embeddings_model,
es_user=self.user,
es_password=self.password,
strategy=ElasticsearchStore.ExactRetrievalStrategy(), #精确搜索
#strategy=ElasticsearchStore.ApproxRetrievalStrategy(), #近似搜索
)
else:
logger.warning("ES未配置用户名和密码")
self.db_init = ElasticsearchStore(
es_url=f"https://{self.IP}:{self.PORT}",
index_name=self.index_name,
query_field="context",
vector_query_field="dense_vector",
embedding=self.embeddings_model,
strategy=ElasticsearchStore.ExactRetrievalStrategy()
)
except ConnectionError:
print("### 初始化 Elasticsearch 失败!")
logger.error("### 初始化 Elasticsearch 失败!")
raise ConnectionError
except Exception as e:
logger.error(f"Error 发生 : {e}")
raise e
"""try:
# 首先尝试通过es_client_python创建
self.es_client_python.indices.create(index=self.index_name)
except BadRequestError as e:
logger.error("创建索引失败,重试")
try:
# 尝试通过db_init创建索引
self.db_init._create_index_if_not_exists(
index_name=self.index_name,
dims_length=self.dims_length
)
except Exception as e:
logger.error("创建索引失败...")
logger.error(e)"""
@staticmethod
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
@staticmethod
def get_vs_path(knowledge_base_name: str):
return os.path.join(ESKBService.get_kb_path(knowledge_base_name), "vector_store")
def do_create_kb(self):
if os.path.exists(self.doc_path):
if not os.path.exists(os.path.join(self.kb_path, "vector_store")):
os.makedirs(os.path.join(self.kb_path, "vector_store"))
else:
logger.warning("directory `vector_store` already exists.")
def vs_type(self) -> str:
return SupportedVSType.ES
def _load_es(self, docs, embed_model):
# 将docs写入到ES中
try:
# 连接 + 同时写入文档
if self.user != "" and self.password != "":
self.db = ElasticsearchStore.from_documents(
documents=docs,
embedding=embed_model,
es_url= f"https://{self.IP}:{self.PORT}",
index_name=self.index_name,
distance_strategy="COSINE",
query_field="context",
vector_query_field="dense_vector",
es_user=self.user,
es_password=self.password
)
else:
self.db = ElasticsearchStore.from_documents(
documents=docs,
embedding=embed_model,
es_url= f"https://{self.IP}:{self.PORT}",
index_name=self.index_name,
distance_strategy="COSINE",
query_field="context",
vector_query_field="dense_vector",
)
except ConnectionError as ce:
print(ce)
print("连接到 Elasticsearch 失败!")
logger.error("连接到 Elasticsearch 失败!")
except Exception as e:
logger.error(f"Error 发生 : {e}")
print(e)
def do_search(self, query:str, top_k: int=VECTOR_SEARCH_TOP_K, request_timeout: int = 30) ->List[Document]:
# 文本相似性检索
docs = self.db_init.similarity_search_with_score(query=query,
k=top_k,request_timeout = request_timeout)
return docs
def do_delete_doc(self, kb_file, **kwargs):
if self.es_client_python.indices.exists(index=self.index_name):
# 从向量数据库中删除索引(文档名称是Keyword)
query = {
"query": {
"term": {
"metadata.source.keyword": kb_file.filepath
}
}
}
# 注意设置size,默认返回10个。
search_results = self.es_client_python.search(body=query, size=50)
delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
if len(delete_list) == 0:
return None
else:
for doc_id in delete_list:
try:
self.es_client_python.delete(index=self.index_name,
id=doc_id,
refresh=True)
except Exception as e:
logger.error("ES Docs Delete Error!")
# self.db_init.delete(ids=delete_list)
#self.es_client_python.indices.refresh(index=self.index_name)
def do_add_doc(self, docs: List[Document], **kwargs):
'''向知识库添加文件'''
print(f"server.knowledge_base.kb_service.es_kb_service.do_add_doc 输入的docs参数长度为:{len(docs)}")
print("*"*100)
self._load_es(docs=docs, embed_model=self.embeddings_model)
# 获取 id 和 source , 格式:[{"id": str, "metadata": dict}, ...]
print("写入数据成功.")
print("*"*100)
if self.es_client_python.indices.exists(index=self.index_name):
file_path = docs[0].metadata.get("source")
query = {
"query": {
"term": {
"metadata.source.keyword": file_path
}
}
}
search_results = self.es_client_python.search(body=query)
if len(search_results["hits"]["hits"]) == 0:
raise ValueError("召回元素个数为0")
info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]]
return info_docs
def do_clear_vs(self):
"""从知识库删除全部向量"""
if self.es_client_python.indices.exists(index=self.kb_name):
self.es_client_python.indices.delete(index=self.kb_name)
def do_drop_kb(self):
"""删除知识库"""
# self.kb_file: 知识库路径
if os.path.exists(self.kb_path):
shutil.rmtree(self.kb_path)