-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrenderer.py
266 lines (244 loc) · 14 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import argparse
import json
import numpy as np
import torch
import nvdiffrast.torch as dr
from geometry.dlmesh_01mse_came_fixbug5_multiatt8 import DLMesh
from render import material
from render import mesh
from render import light
from render import util
import cv2
import pickle
def get_camera_params(resolution= 512, fov=45, elev_angle=-45, azim_angle=250):
fovy = np.deg2rad(fov)
elev = np.radians( elev_angle )
azim = np.radians( azim_angle )
proj_mtx = util.perspective(fovy, resolution /resolution, 1, 50)
mv = util.translate(0, 0, -3) @ (util.rotate_x(elev) @ util.rotate_y(azim))
normal_rotate = util.rotate_y_1(0)
# nomral_rotate = util.rotate_y_1(0) @ util.rotate_x_1(0)
mvp = proj_mtx @ mv
campos = torch.linalg.inv(mv)[:3, 3]
bkgs = torch.ones(1, resolution, resolution, 3, dtype=torch.float32, device='cuda')
return {
'mvp' : mvp[None, ...].cuda(),
'mv' : mv[None, ...].cuda(),
'campos' : campos[None, ...].cuda(),
'resolution' : [resolution, resolution],
'spp' : 1,
'background' : bkgs,
'normal_rotate' : normal_rotate[None,...].cuda(),
}
def validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight=None, display=None):
result_dict = {}
with torch.no_grad():
if FLAGS.mode == 'appearance_modeling':
with torch.no_grad():
lgt.build_mips()
if FLAGS.camera_space_light:
lgt.xfm(target['mv'])
if relight != None:
relight.build_mips()
buffers = geometry.render(glctx, target, lgt, opt_material, if_use_bump=FLAGS.if_use_bump)
result_dict['shaded'] = buffers['shaded'][0, ..., 0:3]
result_dict['shaded'] = util.rgb_to_srgb(result_dict['shaded'])
if relight != None:
result_dict['relight'] = \
geometry.render(glctx, target, relight, opt_material, if_use_bump=FLAGS.if_use_bump)['shaded'][0, ..., 0:3]
result_dict['relight'] = util.rgb_to_srgb(result_dict['relight'])
result_dict['mask'] = (buffers['shaded'][0, ..., 3:4])
result_image = result_dict['shaded']
if display is not None:
# white_bg = torch.ones_like(target['background'])
for layer in display:
if 'latlong' in layer and layer['latlong']:
if isinstance(lgt, light.EnvironmentLight):
result_dict['light_image'] = util.cubemap_to_latlong(lgt.base, FLAGS.display_res)
result_image = torch.cat([result_image, result_dict['light_image']], axis=1)
# elif 'relight' in layer:
# if not isinstance(layer['relight'], light.EnvironmentLight):
# layer['relight'] = light.load_env(layer['relight'])
# img = geometry.render(glctx, target, layer['relight'], opt_material)
# result_dict['relight'] = util.rgb_to_srgb(img[..., 0:3])[0]
# result_image = torch.cat([result_image, result_dict['relight']], axis=1)
elif 'bsdf' in layer:
buffers = geometry.render(glctx, target, lgt, opt_material, bsdf=layer['bsdf'],
if_use_bump=FLAGS.if_use_bump)
if layer['bsdf'] == 'kd':
result_dict[layer['bsdf']] = util.rgb_to_srgb(buffers['shaded'][0, ..., 0:3])
elif layer['bsdf'] == 'normal':
result_dict[layer['bsdf']] = (buffers['shaded'][0, ..., 0:3] + 1) * 0.5
else:
result_dict[layer['bsdf']] = buffers['shaded'][0, ..., 0:3]
result_image = torch.cat([result_image, result_dict[layer['bsdf']]], axis=1)
return result_image, result_dict
@torch.no_grad()
def validate(glctx, geometry, opt_material, lgt, target, out_dir, FLAGS, relight=None, display=None):
os.makedirs(out_dir, exist_ok=True)
result_image, result_dict = validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight, display)
for k in result_dict.keys():
np_img = result_dict[k].detach().cpu().numpy()
if k == 'shaded':
util.save_image(out_dir + '/' + 'shaded.png', np_img)
elif k == 'relight':
util.save_image(out_dir + '/' + 'relight.png', np_img)
elif k == 'kd':
util.save_image(out_dir + '/' + 'kd.png', np_img)
elif k == 'ks':
util.save_image(out_dir + '/' + 'ks.png', np_img)
elif k == 'normal':
util.save_image(out_dir + '/' + 'normal.png', np_img)
elif k == 'mask':
cv2.imwrite(out_dir + '/' + 'mask.png', np_img)
# util.save_image(out_dir + '/' + 'mask.png', np_img)
return 0
def renderer(glctx, load_path, FLAGS, save_path,display,lgt,load_material_path):
base_mesh = mesh.load_mesh(load_path)
geometry = DLMesh(base_mesh, FLAGS)
# mat = base_mesh.material
with open(load_material_path, 'rb') as f:
materials = pickle.load(f)
mat = material.Material({'kd_ks_normal' : materials})
mat['bsdf'] = 'pbr'
if FLAGS.mode == 'geometry_modeling':
pass
elif FLAGS.mode == 'appearance_modeling':
if FLAGS.relight != None:
relight = light.load_env(FLAGS.relight, scale=FLAGS.env_scale)
else:
relight = None
target = get_camera_params(
resolution=512,
fov=45,
elev_angle=-35,
azim_angle=129.6,
)
validate(glctx, geometry, mat, lgt, target, save_path, FLAGS, relight, display)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='nvdiffrec')
parser.add_argument('--config', type=str, default=None, help='Config file')
parser.add_argument('-i', '--iter', type=int, default=5000)
parser.add_argument('-b', '--batch', type=int, default=1)
parser.add_argument('-s', '--spp', type=int, default=1)
parser.add_argument('-l', '--layers', type=int, default=1)
parser.add_argument('-r', '--train-res', nargs=2, type=int, default=[512, 512])
parser.add_argument('-dr', '--display-res', type=int, default=None)
parser.add_argument('-tr', '--texture-res', nargs=2, type=int, default=[1024, 1024])
parser.add_argument('-si', '--save-interval', type=int, default=1000, help="The interval of saving an image")
parser.add_argument('-vi', '--video_interval', type=int, default=10,
help="The interval of saving a frame of the video")
parser.add_argument('-mr', '--min-roughness', type=float, default=0.08)
parser.add_argument('-mip', '--custom-mip', action='store_true', default=False)
parser.add_argument('-rt', '--random-textures', action='store_true', default=False)
parser.add_argument('-bg', '--train_background', default='black',
choices=['black', 'white', 'checker', 'reference'])
parser.add_argument('-o', '--out-dir', type=str, default=None)
parser.add_argument('-rm', '--ref_mesh', type=str)
parser.add_argument('-bm', '--base-mesh', type=str, default=None)
parser.add_argument('--validate', type=bool, default=True)
parser.add_argument("--local_rank", type=int, default=0, help="For distributed training: local_rank")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--add_directional_text", action='store_true', default=False)
parser.add_argument('--mode', default='geometry_modeling', choices=['geometry_modeling', 'appearance_modeling'])
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--sdf_init_shape', default='ellipsoid', choices=['ellipsoid', 'cylinder', 'custom_mesh'])
parser.add_argument('--camera_random_jitter', type=float, default=0.4,
help="A large value is advantageous for the extension of objects such as ears or sharp corners to grow.")
parser.add_argument('--fovy_range', nargs=2, type=float, default=[25.71, 45.00])
parser.add_argument('--elevation_range', nargs=2, type=int, default=[-10, 45],
help="The elevatioin range must in [-90, 90].")
parser.add_argument("--guidance_weight", type=int, default=100, help="The weight of classifier-free guidance")
parser.add_argument("--sds_weight_strategy", type=int, nargs=1, default=0, choices=[0, 1, 2],
help="The strategy of the sds loss's weight")
parser.add_argument("--translation_y", type=float, nargs=1, default=0,
help="translation of the initial shape on the y-axis")
parser.add_argument("--coarse_iter", type=int, nargs=1, default=1000,
help="The iteration number of the coarse stage.")
parser.add_argument('--early_time_step_range', nargs=2, type=float, default=[0.02, 0.5],
help="The time step range in early phase")
parser.add_argument('--late_time_step_range', nargs=2, type=float, default=[0.02, 0.5],
help="The time step range in late phase")
parser.add_argument("--sdf_init_shape_rotate_x", type=int, nargs=1, default=0,
help="rotation of the initial shape on the x-axis")
parser.add_argument("--if_flip_the_normal", action='store_true', default=False,
help="Flip the x-axis positive half-axis of Normal. We find this process helps to alleviate the Janus problem.")
parser.add_argument("--front_threshold", type=int, nargs=1, default=45,
help="the range of front view would be [-front_threshold, front_threshold")
parser.add_argument("--if_use_bump", type=bool, default=True,
help="whether to use perturbed normals during appearing modeling")
parser.add_argument("--uv_padding_block", type=int, default=4, help="The block of uv padding.")
FLAGS = parser.parse_args()
FLAGS.mtl_override = None # Override material of model
FLAGS.dmtet_grid = 64 # Resolution of initial tet grid. We provide 64, 128 and 256 resolution grids. Other resolutions can be generated with https://github.com/crawforddoran/quartet
FLAGS.mesh_scale = 2.1 # Scale of tet grid box. Adjust to cover the model
FLAGS.env_scale = 1.0 # Env map intensity multiplier
FLAGS.envmap = None # HDR environment probe
FLAGS.relight = None # HDR environment probe(relight)
FLAGS.display = None # Conf validation window/display. E.g. [{"relight" : <path to envlight>}]
FLAGS.camera_space_light = False # Fixed light in camera space. This is needed for setups like ethiopian head where the scanned object rotates on a stand.
FLAGS.lock_light = False # Disable light optimization in the second pass
FLAGS.lock_pos = False # Disable vertex position optimization in the second pass
FLAGS.pre_load = True # Pre-load entire dataset into memory for faster training
FLAGS.kd_min = [0.0, 0.0, 0.0, 0.0] # Limits for kd
FLAGS.kd_max = [1.0, 1.0, 1.0, 1.0]
FLAGS.ks_min = [0.0, 0.08, 0.0] # Limits for ks
FLAGS.ks_max = [1.0, 1.0, 1.0]
FLAGS.nrm_min = [-1.0, -1.0, 0.0] # Limits for normal map
FLAGS.nrm_max = [1.0, 1.0, 1.0]
FLAGS.cam_near_far = [1, 50]
FLAGS.learn_light = False
FLAGS.gpu_number = 1
FLAGS.sdf_init_shape_scale = [1.0, 1.0, 1.0]
# FLAGS.local_rank = 0
FLAGS.multi_gpu = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
if FLAGS.multi_gpu:
FLAGS.gpu_number = int(os.environ["WORLD_SIZE"])
FLAGS.local_rank = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group(backend="nccl", world_size=FLAGS.gpu_number, rank=FLAGS.local_rank)
torch.cuda.set_device(FLAGS.local_rank)
if FLAGS.config is not None:
data = json.load(open(FLAGS.config, 'r'))
for key in data:
FLAGS.__dict__[key] = data[key]
# if FLAGS.display_res is None:
# FLAGS.display_res = FLAGS.train_res
# if FLAGS.out_dir is None:
# FLAGS.out_dir = 'out/cube_%d' % (FLAGS.train_res)
# else:
# FLAGS.out_dir = 'out/' + FLAGS.out_dir
# if FLAGS.local_rank == 0:
# print("Config / Flags:")
# print("---------")
# for key in FLAGS.__dict__.keys():
# print(key, FLAGS.__dict__[key])
# print("---------")
#
# seed_everything(FLAGS.seed, FLAGS.local_rank)
os.makedirs(FLAGS.out_dir, exist_ok=True)
# glctx = dr.RasterizeGLContext()
glctx = dr.RasterizeCudaContext()
# ==============================================================================================
# Create data pipeline
# ==============================================================================================
# dataset_train = DatasetMesh(glctx, FLAGS, validate=False)
# dataset_validate = DatasetMesh(glctx, FLAGS, validate=True)
# dataset_gif = DatasetMesh(glctx, FLAGS, gif=True)
# ==============================================================================================
# Create env light with trainable parameters
# ==============================================================================================
if FLAGS.mode == 'appearance_modeling' and FLAGS.base_mesh is not None:
if FLAGS.learn_light:
lgt = light.create_trainable_env_rnd(512, scale=0.0, bias=1)
else:
lgt = light.load_env(FLAGS.envmap, scale=FLAGS.env_scale)
else:
lgt = None
load_path = FLAGS.base_mesh
# load_path = '/data/mayiwei/Code/3DStyle/Fantasia3D_CVPR24_final/results/result_XDreamer_alllayer_cglora_lr_grad/mesh.obj'
load_material_path = os.path.join(FLAGS.out_dir, "material.pkl")
save_path = os.path.join(FLAGS.out_dir, 'change_view')
display = [{"bsdf" : "kd"}, {"bsdf" : "ks"}, {"bsdf" : "normal"}]
renderer(glctx, load_path, FLAGS, save_path, display, lgt,load_material_path)