forked from jg8610/multi-task-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_reader.py
257 lines (195 loc) · 8.69 KB
/
model_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Utilities for parsing CONll text files."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
import time
import pandas as pd
import csv
import pdb
import pickle
import numpy as np
#from six.moves import xrange # pylint: disable=redefined-builtin
"""
==========
Section 1.
==========
This section defines the methods that:
(1). Read in the words, add padding, and assign each an integer
(2). Read in the tagss, add padding, and assign each a category of the form
[0,...,1,...0] etc.
Section 2 will deal with creating the window and mini-batching
"""
"""
1.0. Utility Methods
"""
def read_tokens(filename, padding_val, col_val=-1):
# Col Values
# 0 - words
# 1 - POS
# 2 - tags
with open(filename, 'rt', encoding='utf8') as csvfile:
r = csv.reader(csvfile, delimiter=' ')
words = np.transpose(np.array([x for x in list(r) if x != []])).astype(object)
# padding token '0'
print('reading ' + str(col_val) + ' ' + filename)
if col_val!=-1:
words = words[col_val]
return np.pad(
words, pad_width=(padding_val, 0), mode='constant', constant_values=0)
def _build_vocab(filename, padding_width, col_val):
# can be used for input vocab
data = read_tokens(filename, padding_width, col_val)
counter = collections.Counter(data)
# get rid of all words with frequency == 1
counter = {k: v for k, v in counter.items() if v > 1}
counter['<unk>'] = 10000
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def _build_tags(filename, padding_width, col_val):
# can be used for classifications and input vocab
data = read_tokens(filename, padding_width, col_val)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = list(zip(*count_pairs))
tag_to_id = dict(zip(words, range(len(words))))
if col_val == 1:
pickle.dump(tag_to_id,open('pos_to_id.pkl','wb'))
pickle.dump(count_pairs,open('pos_counts.pkl','wb'))
return tag_to_id
"""
1.1. Word Methods
"""
def _file_to_word_ids(filename, word_to_id, padding_width):
# assumes _build_vocab has been called first as is called word to id
data = read_tokens(filename, padding_width, 0)
default_value = word_to_id['<unk>']
return [word_to_id.get(word, default_value) for word in data]
"""
1.2. tag Methods
"""
def _int_to_tag(tag_int, tag_vocab_size):
# creates the one-hot vector
a = np.empty(tag_vocab_size)
a.fill(0)
np.put(a, tag_int, 1)
return a
def _seq_tag(tag_integers, tag_vocab_size):
# create the array of one-hot vectors for your sequence
return np.vstack(_int_to_tag(
tag, tag_vocab_size) for tag in tag_integers)
def _file_to_tag_classifications(filename, tag_to_id, padding_width, col_val):
# assumes _build_vocab has been called first and is called tag to id
data = read_tokens(filename, padding_width, col_val)
return [tag_to_id[tag] for tag in data]
def raw_x_y_data(data_path, num_steps):
train = "train.txt"
valid = "validation.txt"
train_valid = "train_val_combined.txt"
comb = "all_combined.txt"
test = "test.txt"
train_path = os.path.join(data_path, train)
valid_path = os.path.join(data_path, valid)
train_valid_path = os.path.join(data_path, train_valid)
comb_path = os.path.join(data_path, comb)
test_path = os.path.join(data_path, test)
# checking for all combined
if not os.path.exists(data_path + '/train_val_combined.txt'):
print('writing train validation combined')
train_data = pd.read_csv(data_path + '/train.txt', sep= ' ',header=None)
validation_data = pd.read_csv(data_path + '/validation.txt', sep= ' ',header=None)
comb = pd.concat([train_data,validation_data])
comb.to_csv(data_path + '/train_val_combined.txt', sep=' ', index=False, header=False)
if not os.path.exists(data_path + '/all_combined.txt'):
print('writing combined')
test_data = pd.read_csv(data_path + '/test.txt', sep= ' ',header=None)
train_data = pd.read_csv(data_path + '/train.txt', sep= ' ',header=None)
val_data = pd.read_csv(data_path + '/validation.txt', sep=' ', header=None)
comb = pd.concat([train_data,val_data,test_data])
comb.to_csv(data_path + '/all_combined.txt', sep=' ', index=False, header=False)
word_to_id = _build_vocab(train_path, num_steps-1, 0)
# use the full training set for building the target tags
pos_to_id = _build_tags(comb_path, num_steps-1, 1)
chunk_to_id = _build_tags(comb_path, num_steps-1, 2)
word_data_t = _file_to_word_ids(train_path, word_to_id, num_steps-1)
pos_data_t = _file_to_tag_classifications(train_path, pos_to_id, num_steps-1, 1)
chunk_data_t = _file_to_tag_classifications(train_path, chunk_to_id, num_steps-1, 2)
word_data_v = _file_to_word_ids(valid_path, word_to_id, num_steps-1)
pos_data_v = _file_to_tag_classifications(valid_path, pos_to_id, num_steps-1, 1)
chunk_data_v = _file_to_tag_classifications(valid_path, chunk_to_id, num_steps-1, 2)
word_data_c = _file_to_word_ids(train_valid_path, word_to_id, num_steps-1)
pos_data_c = _file_to_tag_classifications(train_valid_path, pos_to_id, num_steps-1, 1)
chunk_data_c = _file_to_tag_classifications(train_valid_path, chunk_to_id, num_steps-1, 2)
word_data_test = _file_to_word_ids(test_path, word_to_id, num_steps-1)
pos_data_test = _file_to_tag_classifications(test_path, pos_to_id, num_steps-1, 1)
chunk_data_test = _file_to_tag_classifications(test_path, chunk_to_id, num_steps-1, 2)
return word_data_t, pos_data_t, chunk_data_t, word_data_v, \
pos_data_v, chunk_data_v, word_to_id, pos_to_id, chunk_to_id, \
word_data_test, pos_data_test, chunk_data_test, word_data_c, \
pos_data_c, chunk_data_c
"""
============
Section 2.
============
Here we want to feed in the raw data, batch-size, and window size
and get back mini batches. These will be of size [batch_size, num_steps]
Args:
raw_words = the raw array of the word integers
raw_tag = the raw array of the tag integers
batch_size = batch size
num_steps = the number of steps you are going to look back in your rnn
tag_vocab_size = the size of the the number of tag tokens (
needed for transfer into the [0,...,1,...,0] format)
Yields
(x,y) - x the batch, y the tag tags
"""
def create_batches(raw_words, raw_pos, raw_chunk, batch_size, num_steps, pos_vocab_size,
chunk_vocab_size):
"""Create those minibatches."""
def _reshape_and_pad(tokens, batch_size, num_steps):
tokens = np.array(tokens, dtype=np.int32)
data_len = len(tokens)
post_padding_required = (batch_size*num_steps) - np.mod(data_len, batch_size*num_steps)
tokens = np.pad(tokens, (0, post_padding_required), 'constant',
constant_values=0)
epoch_length = len(tokens) // (batch_size*num_steps)
tokens = tokens.reshape([batch_size, num_steps*epoch_length])
return tokens
"""
1. Prepare the input (word) data
"""
word_data = _reshape_and_pad(raw_words, batch_size, num_steps)
pos_data = _reshape_and_pad(raw_pos, batch_size, num_steps)
chunk_data = _reshape_and_pad(raw_chunk, batch_size, num_steps)
"""
3. Do the epoch thing and iterate
"""
data_len = len(raw_words)
# how many times do you iterate to reach the end of the epoch
epoch_size = (data_len // (batch_size*num_steps)) + 1
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = word_data[:, i*num_steps:(i+1)*num_steps]
y_pos = np.vstack(_seq_tag(pos_data[tag, i*num_steps:(i+1)*num_steps],
pos_vocab_size) for tag in range(batch_size))
y_chunk = np.vstack(_seq_tag(chunk_data[tag, i*num_steps:(i+1)*num_steps],
chunk_vocab_size) for tag in range(batch_size))
y_pos = y_pos.astype(np.int32)
y_chunk = y_chunk.astype(np.int32)
yield (x, y_pos, y_chunk)
def _int_to_string(int_pred, d):
# integers are the Values
keys = []
for x in int_pred:
keys.append([k for k, v in d.items() if v == (x)])
return keys
def _res_to_list(res, batch_size, num_steps, to_id, w_length):
tmp = np.concatenate([x.reshape(batch_size, num_steps)
for x in res], axis=1).reshape(-1)
tmp = np.squeeze(_int_to_string(tmp, to_id))
return tmp[range(num_steps-1, w_length)].reshape(-1,1)