-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
168 lines (131 loc) · 6.65 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import json
from dataclasses import dataclass, field
from typing import Optional, List, Dict, Sequence
import torch
import transformers
import numpy as np
from sklearn.metrics import recall_score, precision_score, roc_auc_score, f1_score, accuracy_score
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
from datasets import load_dataset
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["WANDB_LOG_MODEL"]="false"
@dataclass
class TrainingArguments(transformers.TrainingArguments):
"""Arguments for the training loop."""
num_train_epochs: int = field(default=1, metadata={"help": "Total number of training epochs to perform."})
per_device_train_batch_size: int = field(default=4)
per_device_eval_batch_size: int = field(default=8)
gradient_accumulation_steps: int = field(default=2)
weight_decay: float = field(default=0.05)
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={'help': 'Maximum sequence length. Sequences will be right padded (and possibly truncated).',},)
flash_attn : Optional[bool] = field(default=False)
output_dir: str = field(default="output")
lr_scheduler_type: str = field(default="cosine_with_restarts")
seed: int = field(default=42)
learning_rate: float = field(default=1e-4)
#lr_scheduler_type: str = field(default="cosine_with_restarts")
warmup_steps: int = field(default=50)
fp16: bool = field(default=False)
logging_steps: int = field(default=1000)
save_steps: int = field(default=1000)
save_total_limit: int = field(default=1)
checkpointing: bool = field(default=False)
eval_and_save_results: bool = field(default=True)
find_unused_parameters: bool = field(default=False)
save_model: bool = field(default=False)
report_to: Optional[str] = field(default='none')
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict)
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Convert input_ids, labels, and attention_mask to tensors
input_ids = torch.tensor([instance["input_ids"] for instance in instances], dtype=torch.long)
attention_mask = torch.tensor([instance["attention_mask"] for instance in instances], dtype=torch.long)
labels = torch.tensor([instance["label"] for instance in instances], dtype=torch.long)
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask
}
"""
Manually calculate the accuracy, f1, matthews_correlation, precision, recall with sklearn.
"""
from sklearn.metrics import recall_score, precision_score, roc_auc_score, f1_score,accuracy_score
from scipy.special import softmax
def calculate_metric_with_sklearn(logits: np.ndarray, labels: np.ndarray):
probabilities = softmax(logits, axis=1)
predictions = np.argmax(probabilities, axis=1)
positive_probabilities = probabilities[:, 1]
recall = recall_score(labels, predictions)
precision = precision_score(labels, predictions)
auroc = roc_auc_score(labels, positive_probabilities)
f1 = f1_score(labels, predictions)
accuracy = accuracy_score(labels,predictions)
return {
'accuracy':accuracy,
"recall": recall,
"precision": precision,
"auroc": auroc,
"f1_score": f1,
}
def compute_metrics(eval_pred):
logits, labels = eval_pred
if isinstance(logits, tuple): # Unpack logits if it's a tuple
logits = logits[0]
return calculate_metric_with_sklearn(logits, labels)
def train():
parser = transformers.HfArgumentParser((TrainingArguments))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
training_args = parser.parse_args_into_dataclasses()
MODEL_NAME_OR_PATH = './esm_model'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH,padding_side='right',use_fast=True,
model_max_length=training_args.model_max_length,
trust_remote_code=True,)
train_data_path = './cls_data/SA_train.csv'
test_data_path = './cls_data/SA_test.csv'
train_dataset = load_dataset('csv', data_files=train_data_path)['train']
test_dataset = load_dataset('csv', data_files=test_data_path)['train']
def tokenize_function(examples):
return tokenizer(examples['Sequence'], padding='max_length',max_length=40, truncation=True)
train_dataset = train_dataset.map(tokenize_function, batched=True)
test_dataset = test_dataset.map(tokenize_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME_OR_PATH,num_labels=2,trust_remote_code=True)
print('Creating and saving datasets...')
print(len(train_dataset[0]['input_ids']))
print(train_dataset[0])
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
print(f" base model - Total size={n_params/2**20:.2f}M params")
n_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of trainable parameters: {n_trainable_params}")
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
# define trainer
trainer = transformers.Trainer(model=model,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=data_collator)
trainer.train()
if training_args.eval_and_save_results:
results_path = os.path.join(training_args.output_dir, "results", training_args.run_name)
results = trainer.evaluate(eval_dataset=test_dataset)
os.makedirs(results_path, exist_ok=True)
with open(os.path.join(results_path, "eval_results.json"), "w") as f:
json.dump(results, f)
if __name__ == "__main__":
train()