forked from JWSoh/MZSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
219 lines (159 loc) · 9.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from utils import *
import model
import time
from config import *
class Train(object):
def __init__(self, trial, step, size, scale_list, meta_batch_size, meta_lr, meta_iter, task_batch_size, task_lr, task_iter, data_generator, checkpoint_dir, conf):
print('[*] Initialize Training')
self.trial = trial
self.step=step
self.HEIGHT=size[0]
self.WIDTH=size[1]
self.CHANNEL=size[2]
self.scale_list=scale_list
self.META_BATCH_SIZE = meta_batch_size
self.META_LR = meta_lr
self.META_ITER = meta_iter
self.TASK_BATCH_SIZE = task_batch_size
self.TASK_LR = task_lr
self.TASK_ITER = task_iter
self.data_generator=data_generator
self.checkpoint_dir=checkpoint_dir
self.conf=conf
'''placeholders'''
self.inputa = tf.placeholder(dtype=tf.float32, shape=[self.META_BATCH_SIZE, self.TASK_BATCH_SIZE, self.HEIGHT, self.WIDTH, self.CHANNEL])
self.inputb = tf.placeholder(dtype=tf.float32, shape=[self.META_BATCH_SIZE, self.TASK_BATCH_SIZE, self.HEIGHT, self.WIDTH, self.CHANNEL])
self.labela = tf.placeholder(dtype=tf.float32, shape=[self.META_BATCH_SIZE, self.TASK_BATCH_SIZE, self.HEIGHT, self.WIDTH, self.CHANNEL])
self.labelb = tf.placeholder(dtype=tf.float32, shape=[self.META_BATCH_SIZE, self.TASK_BATCH_SIZE, self.HEIGHT, self.WIDTH, self.CHANNEL])
'''model'''
self.PARAM=model.Weights(scope='MODEL')
self.weights=self.PARAM.weights
self.MODEL = model.MODEL(name='MODEL')
def construct_model(self):
self.stop_grad=tf.Variable(True, name='stop_grad', trainable=False)
def task_metalearn(inp):
inputa, inputb, labela, labelb = inp
loss_func = tf.losses.absolute_difference
task_outputbs, task_lossesb = [], []
self.MODEL.forward(inputa, self.weights)
task_outputa = self.MODEL.output
weights = self.MODEL.param
task_lossa = loss_func(labela, task_outputa)
grads = tf.gradients(task_lossa, list(weights.values()))
grads = tf.cond(self.stop_grad, lambda: [tf.stop_gradient(grad) for grad in grads], lambda: grads)
gradients = dict(zip(weights.keys(), grads))
fast_weights = dict(
zip(weights.keys(), [weights[key] - self.TASK_LR * gradients[key] for key in weights.keys()]))
self.MODEL.forward(inputb, fast_weights)
output = self.MODEL.output
task_outputbs.append(output)
task_lossesb.append(loss_func(labelb, output))
for j in range(self.TASK_ITER - 1):
self.MODEL.forward(inputa, fast_weights)
output_s = self.MODEL.output
loss = loss_func(labela, output_s)
grads = tf.gradients(loss, list(fast_weights.values()))
grads = tf.cond(self.stop_grad, lambda: [tf.stop_gradient(grad) for grad in grads], lambda: grads)
gradients = dict(zip(fast_weights.keys(), grads))
fast_weights = dict(zip(fast_weights.keys(),
[fast_weights[key] - self.TASK_LR* gradients[key] for key in
fast_weights.keys()]))
self.MODEL.forward(inputb, fast_weights)
output=self.MODEL.output
task_outputbs.append(output)
task_lossesb.append(loss_func(labelb, output))
task_output = [task_outputa, task_outputbs, task_lossa, task_lossesb]
return task_output
out_dtype = [tf.float32, [tf.float32] * self.TASK_ITER, tf.float32, [tf.float32] * self.TASK_ITER]
result = tf.map_fn(task_metalearn, elems=(self.inputa, self.inputb, self.labela, self.labelb), dtype=out_dtype,
parallel_iterations=self.META_BATCH_SIZE)
self.outputas, self.outputbs, self.lossesa, self.lossesb = result
def __call__(self):
PRINT_ITER=100
SAVE_ITER=2500
SECOND_ORDER_GRAD_ITER=0 # For the 1st-order approximation. Until this step, 1st-order approximation is used for fast training
print('[*] Setting Train Configuration')
self.construct_model()
self.global_step=tf.Variable(self.step, name='global_step', trainable=False)
self.second_grad_on=tf.assign(self.stop_grad, False)
'''losses'''
self.total_loss1 = tf.reduce_sum(self.lossesa) / tf.to_float(self.META_BATCH_SIZE)
self.total_losses2 = [tf.reduce_sum(self.lossesb[j]) / tf.to_float(self.META_BATCH_SIZE) for j in range(self.TASK_ITER)]
'''weighted loss'''
self.LW=self.get_loss_weights()
self.weighted_total_losses2 = tf.reduce_mean(tf.multiply(tf.convert_to_tensor(self.total_losses2),self.LW))
# self.weighted_total_losses2=self.total_losses2[-1]
'''Optimizers'''
self.pretrain_op = tf.train.AdamOptimizer(self.META_LR).minimize(self.total_loss1)
self.opt = tf.train.AdamOptimizer(self.META_LR)
# self.gvs = self.opt.compute_gradients(self.total_losses2[self.META_BATCH_SIZE-1])
self.gvs = self.opt.compute_gradients(self.weighted_total_losses2)
self.metatrain_op= self.opt.apply_gradients(self.gvs)
'''Summary'''
self.summary_op = tf.summary.merge([tf.summary.scalar('Train Pre_update loss', self.total_loss1)]+
[tf.summary.scalar('Train Post_update loss, step %d' % (j+1), self.total_losses2[j]) for j in range(self.TASK_ITER)]+
[tf.summary.image('1.Input_query', tf.clip_by_value(self.inputb[0], 0., 1.),
max_outputs=4),
tf.summary.image('2.output_query', tf.clip_by_value(self.outputbs[self.TASK_ITER-1][0], 0., 1.),
max_outputs=4),
tf.summary.image('3.GT', self.labelb[0], max_outputs=4)
])
self.saver=tf.train.Saver(max_to_keep=100000)
pretrain_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='MODEL')
self.loader = tf.train.Saver(var_list=pretrain_vars)
self.init=tf.global_variables_initializer()
count_param(scope='MODEL')
with tf.Session(config=self.conf) as sess:
sess.run(self.init)
if IS_TRANSFER:
self.loader.restore(sess, TRANS_MODEL)
print('==================== PRETRAINED MODEL Loading Succeeded ====================')
could_load, model_step = load(self.saver, sess, self.checkpoint_dir, folder='Model%d' % self.trial)
if could_load:
print('Iteration:', self.step)
print('==================== Loading Succeeded ===================================')
assert self.step == model_step, 'The latest step and the input step do not match.'
else:
print('==================== No model to load ======================================')
writer = tf.summary.FileWriter('./logs%d' % self.trial, sess.graph)
print('[*] Training Starts')
step = self.step
t2 = time.time()
while True:
try:
inputa, labela, inputb, labelb = self.data_generator.make_data_tensor(sess, self.scale_list, noise_std=0.0)
'''feed & fetch'''
feed_dict = {self.inputa: inputa, self.inputb: inputb, self.labela: labela, self.labelb: labelb}
if step == SECOND_ORDER_GRAD_ITER:
second_grad=sess.run(self.second_grad_on)
print('1st Order Gradients: ', second_grad)
sess.run(self.metatrain_op, feed_dict=feed_dict)
step += 1
if step % PRINT_ITER == 0:
t1 = t2
t2 = time.time()
lossa_, lossb_, summary = sess.run([self.total_loss1, self.total_losses2[-1], self.summary_op], feed_dict=feed_dict)
print('Iteration:', step, '(Pre, Post) Loss:', lossa_, lossb_, 'Time: %.2f' % (t2 - t1))
writer.add_summary(summary, step)
writer.flush()
if step % SAVE_ITER == 0:
print_time()
save(self.saver, sess, self.checkpoint_dir, self.trial, step)
if step == self.META_ITER:
print('Done Training')
print_time()
break
except KeyboardInterrupt:
print('***********KEY BOARD INTERRUPT *************')
print('Iteration:', step)
print_time()
save(self.saver, sess, self.checkpoint_dir, self.trial, step)
break
def get_loss_weights(self):
loss_weights = tf.ones(shape=[self.TASK_ITER]) * (1.0/self.TASK_ITER)
decay_rate = 1.0 / self.TASK_ITER / (10000 / 3)
min_value= 0.03 / self.TASK_ITER
loss_weights_pre = tf.maximum(loss_weights[:-1] - (tf.multiply(tf.to_float(self.global_step), decay_rate)), min_value)
loss_weight_cur= tf.minimum(loss_weights[-1] + (tf.multiply(tf.to_float(self.global_step),(self.TASK_ITER- 1) * decay_rate)), 1.0 - ((self.TASK_ITER - 1) * min_value))
loss_weights = tf.concat([[loss_weights_pre], [[loss_weight_cur]]], axis=1)
return loss_weights