-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
250 lines (237 loc) · 9.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 10 13:16:41 2020
@author: Xuye Liu
"""
import argparse
import os
import pickle
import random
import sys
import time
import traceback
import numpy as np
import logging
import torch
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.utils.data as Data
from keras.callbacks import ModelCheckpoint, Callback
import keras.backend as K
from models.GCNLayer_pytorch import GraphConvolution
from timeit import default_timer as timer
from utils.myutils import batch_gen, init_tf, seq2sent
from models.HAConvGNN import HAConvGNN, TimeDistributed, Flatten
from utils.model import create_model
from utils.myutils import batch_gen, init_tf
from utils.timer import AverageMeter, AccuracyHelper
import warnings
warnings.filterwarnings('ignore')
logger = logging.getLogger()
def set_random_seed(seed = 10,deterministic=False,benchmark=False):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
if benchmark:
torch.backends.cudnn.benchmark = True
def get_accuracy(scores, labels):
correct = 0
outputs = torch.argmax(scores, dim = 1)
for predict, target in zip(outputs, labels):
if predict == target:
correct += 1
return correct
if __name__ == '__main__':
# wandb.init(project="notebook_test")
set_random_seed(1337,deterministic=True)
parser = argparse.ArgumentParser(description='')
parser.add_argument('--gpu', type=str, help='0 or 1', default='0')
parser.add_argument('--batch-size', dest='batch_size', type=int, default=10)
parser.add_argument('--epochs', dest='epochs', type=int, default=40)
parser.add_argument('--data', dest='dataprep', type=str, default='../data')
parser.add_argument('--outdir', dest='outdir', type=str, default='./modelout')
parser.add_argument('--asthops', dest='hops', type=int, default=2)
args = parser.parse_args()
outdir = args.outdir
dataprep = args.dataprep
gpu = args.gpu
batch_size = args.batch_size
epochs = args.epochs
asthops = args.hops
# set gpu here
init_tf(gpu)
# Load tokenizers
codetok = pickle.load(open('{}/code_notebook.tok'.format(dataprep), 'rb'), encoding='UTF-8')
comstok = pickle.load(open('{}/coms_notebook.tok'.format(dataprep), 'rb'), encoding='UTF-8')
asttok = pickle.load(open('{}/ast_notebook.tok'.format(dataprep), 'rb'), encoding='UTF-8')
codevocabsize = codetok.vocab_size
comvocabsize = comstok.vocab_size
astvocabsize = asttok.vocab_size
# TODO: setup config
config = dict()
config['asthops'] = asthops
config['codevocabsize'] = codevocabsize
config['comvocabsize'] = comvocabsize
config['astvocabsize'] = astvocabsize
# set sequence length for our input
config['codelen'] = 200
config['maxastnodes'] = 300
config['comlen'] = 30
config['batch_size'] = batch_size
config['epochs'] = epochs
# Load data
seqdata = pickle.load(open('dataset_notebook.pkl', 'rb'))
node_data = seqdata['strain_nodes']
print("len",len(node_data))
print("len",len(seqdata['sval_nodes']))
edges = seqdata['strain_edges']
config['edge_type'] = 'sml'
test = seqdata['ctest']
dttest = seqdata['dttest']
# model parameters
steps = int(len(seqdata['ctrain'])/batch_size)
# steps = 50
# valsteps = 50
valsteps = int(len(seqdata['cval'])/batch_size)
# Print information
print('codevocabsize {}'.format(codevocabsize))
print('comvocabsize {}'.format(comvocabsize))
print('astvocabsize {}'.format(astvocabsize))
print('batch size {}'.format(batch_size))
print('steps {}'.format(steps))
print('training data size {}'.format(steps*batch_size))
print('vaidation data size {}'.format(valsteps*batch_size))
print('------------------------------------------')
# create model
net, device = create_model(config)
optimizer = torch.optim.Adamax(net.parameters(), lr = 2e-3)
loss_func = torch.nn.CrossEntropyLoss()
# set up data generators
train_data = Data.DataLoader(dataset = seqdata['ctrain'], batch_size=200, shuffle = True)
valid_data = Data.DataLoader(dataset = seqdata['cval'], batch_size= 200, shuffle = True)
train_gen = batch_gen(seqdata, 'train', config, nodedata=node_data, edgedata=edges)
valgen = batch_gen(seqdata, 'val', config, nodedata=seqdata['sval_nodes'], edgedata=seqdata['sval_edges'])
testgen = batch_gen(seqdata, 'test', config, nodedata=seqdata['stest_nodes'], edgedata=seqdata['stest_edges'])
outfn = outdir+"/predictions/loss_notebook.txt"
outf = open(outfn, 'w')
start_epoch = 0
stats = {'epoch': start_epoch, 'best_valid': 0, 'no_improvement': 0}
## Train
history_acc = []
history_loss = []
history_valacc = []
hitory_valloss = []
for epoch in range(70):
train_loss, valid_loss = [], []
total_correct = 0.0
## training part
bar = tqdm(range(steps))
val_bar = tqdm(range(valsteps))
ml_loss = AverageMeter()
acc = AccuracyHelper()
val_loss = AverageMeter()
val_acc = AccuracyHelper()
bar.set_description("%s" % 'Epoch = %d [accuracy = x.xx, loss = x.xx]' %
epoch)
val_bar.set_description("%s" % 'Epoch = %d [accuracy = x.xx, loss = x.xx]' %
epoch)
for step in bar:
train_batch = train_gen.getitem(step)
train1 = train_batch[0] ##tdatseqs, comseqs, smlnodes, wedge_1
train2 = train_batch[1] ##comouts
train2 = np.array(train2)
train2 = torch.from_numpy(train2)
train2 = train2.type(torch.LongTensor)
train2 = train2.to(device)
for i in range(4):
train1[i] = np.array(train1[i])
train1[i] = torch.from_numpy(train1[i])
train1[i] = train1[i].type(torch.LongTensor)
train1[i] = train1[i].to(device)
output = net([train1[0], train1[1], train1[2], train1[3]])
loss = loss_func(output, train2)
total_correct += get_accuracy(output, train2)
optimizer.zero_grad()
# backward propogation
loss.backward()
# weight optimizer
optimizer.step()
ml_loss.update(loss, batch_size*30)
acc.update(total_correct, batch_size * 30)
log_info = 'Epoch = %d [accuracy = %.4f, loss = %.4f]' % \
(epoch, acc.avg, ml_loss.avg)
bar.set_description("%s" % log_info)
train_loss.append(loss.item())
outf.write("loss" + str(np.mean(train_loss)) + "accuracy" + str(acc.avg) + "\n" )
outf.flush()
total_correct = 0.0
with torch.no_grad():
for step in val_bar:
val_batch = valgen.getitem(step)
val1 = val_batch[0] ##tdatseqs, comseqs, smlnodes, wedge_1
val2 = val_batch[1] ##comouts
val2 = np.array(val2)
val2 = torch.from_numpy(val2)
val2 = val2.type(torch.LongTensor)
val2 = val2.to(device)
for i in range(4):
val1[i] = np.array(val1[i])
val1[i] = torch.from_numpy(val1[i])
val1[i] = val1[i].type(torch.LongTensor)
val1[i] = val1[i].to(device)
output = net([val1[0], val1[1], val1[2], val1[3]])
loss = loss_func(output, val2)
total_correct += get_accuracy(output, val2)
val_loss.update(loss, batch_size*30)
val_acc.update(total_correct, batch_size*30)
log_info = 'Epoch = %d [val_acc = %.4f, val_loss = %.4f]' % \
(epoch, val_acc.avg, val_loss.avg)
val_bar.set_description("%s" % log_info)
valid_loss.append(loss.item())
history_acc.append(acc.avg)
history_loss.append(ml_loss.avg)
history_valacc.append(val_acc.avg)
hitory_valloss.append(val_loss.avg)
outf.write("valid loss" + str(np.mean(valid_loss)) + "val_acc" + str(val_acc.avg) + "\n" )
outf.flush()
train_gen.on_epoch_end()
valgen.on_epoch_end()
if val_acc.avg > stats['best_valid']:
logger.info('Best valid: %s = %.2f (epoch %d)' %
("val_acc", val_acc.avg, epoch))
torch.save({'epoch': epoch,'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),'loss': loss},
"./modelout/" +"HAConvGNN_saved_model.h5")
print("Improved from %.4f to %.4f" % (stats['best_valid'], val_acc.avg))
stats['best_valid'] = val_acc.avg
stats['no_improvement'] = 0
else:
print("No improvement, best is %.4f" % (stats['best_valid']))
stats['no_improvement'] += 1
if stats['no_improvement'] >= 2:
break
print("Epoch: ", epoch, "Training Loss: ", np.mean(train_loss), "Valid Loss", np.mean(valid_loss))
outf.close()
## Test
plt.figure(figsize=(15, 10))
plt.subplot(211)
plt.plot(history_acc)
plt.plot(history_valacc)
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.grid()
plt.subplot(212)
plt.plot(history_loss)
plt.plot(hitory_valloss)
plt.yscale('log')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.grid()
plt.show()
plt.savefig('./plot.png')