-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter_duplications.py
96 lines (83 loc) · 5.22 KB
/
filter_duplications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
from tqdm import tqdm
import argparse
def filter_dups(saved_home, dups_info_home, context_file_path, keyword_file_path):
"""
filter out the duplicates in the training data with the testing data according to the obtained duplication info file.
:param saved_home: non-filtered data home
:param dups_info_home: duplication information home
:return: None
"""
#orig_context_file = open(os.path.join(saved_home, 'data_for_corenlp', 'kp20k_training_context_for_corenlp.txt'),
# encoding='utf-8')
#context_lines = orig_context_file.readlines()
#orig_allkeys_file = open(os.path.join(saved_home, 'data_for_corenlp', 'kp20k_training_keyword_for_corenlp.txt'),
# encoding='utf-8')
orig_context_file = open(context_file_path, encoding='utf-8')
context_lines = orig_context_file.readlines()
orig_allkeys_file = open(keyword_file_path, encoding='utf-8')
allkeys_lines = orig_allkeys_file.readlines()
assert len(context_lines) == len(allkeys_lines)
context_file_name = os.path.split(context_file_path)[1]
context_file_name = os.path.splitext(context_file_name)[0]
filtered_context_file_name = "{}_filtered".format(context_file_name)
keyword_file_name = os.path.split(keyword_file_path)[1]
keyword_file_name = os.path.splitext(keyword_file_name)[0]
filtered_keyword_file_name = "{}_filtered".format(keyword_file_name)
# filter out the duplicates in the validation and the testing datasets and the kp20k training dataset itself
dups_info_datasets = ['kp20k_training', 'kp20k_validation', 'kp20k_testing',
'inspec_testing', 'krapivin_testing',
'nus_testing', 'semeval_testing']
total_filtered_idx_set = set()
for dataset in dups_info_datasets:
filtered_idx_set = set()
dups_info_file = open(
os.path.join(dups_info_home, '{}_context_nstpws_dups_w_kp20k_training.txt'.format(dataset)), encoding='utf-8')
for line in dups_info_file:
line = line.strip()
# inspec_testing_48 kp20k_training_433051 jc_sc:0.7368; affine invariants of convex polygons | affine invariants of convex polygons
dups, titles = line.split(';')
src_dup, filtered_dup, _ = dups.split()
src_idx = int(src_dup.strip().split('_')[-1])
filtered_idx = int(filtered_dup.strip().split('_')[-1])
if dataset != 'kp20k_training':
filtered_idx_set.add(filtered_idx)
else:
if src_idx not in filtered_idx_set:
filtered_idx_set.add(filtered_idx)
total_filtered_idx_set = total_filtered_idx_set.union(filtered_idx_set)
print('Num of filtered kp20k training data: {}'.format(len(total_filtered_idx_set)))
# also filter out the invalid data samples
print('Finding the invalid data samples in the original kp20k training ...')
for corpus_idx in tqdm(range(len(context_lines))):
if context_lines[corpus_idx].strip().split() == [''] or allkeys_lines[corpus_idx].strip().split(' ; ') == ['']:
total_filtered_idx_set.add(corpus_idx)
print('Num of filtered kp20k training data: {}'.format(len(total_filtered_idx_set)))
total_filtered_idxes = sorted(list(total_filtered_idx_set))
for filter_idx in total_filtered_idxes:
context_lines[filter_idx] = '\n'
allkeys_lines[filter_idx] = '\n'
filtered_context_file = open(os.path.join(saved_home, 'data_for_corenlp',
'{}.txt'.format(filtered_context_file_name)),
'w', encoding='utf-8')
filtered_context_file.writelines(context_lines)
filtered_allkeys_file = open(os.path.join(saved_home, 'data_for_corenlp',
'{}.txt'.format(filtered_keyword_file_name)),
'w', encoding='utf-8')
filtered_allkeys_file.writelines(allkeys_lines)
orig_context_file = open(os.path.join(saved_home, 'data_for_corenlp',
'kp20k_training_filtered_for_corenlp_idxes.txt'),
'w', encoding='utf-8')
orig_context_file.write(' '.join([str(idx) for idx in total_filtered_idxes]) + '\n')
orig_context_file.write(str(len(total_filtered_idxes)) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='integrated_data_preprocess')
parser.add_argument('-saved_home', type=str, default='process_json/integrated_processed_data')
parser.add_argument('-context_file_path', type=str,
default='process_json/integrated_processed_data/data_for_corenlp/kp20k_training_context_for_corenlp_sorted.txt')
parser.add_argument('-keyword_file_path', type=str,
default='process_json/integrated_processed_data/data_for_corenlp/kp20k_training_keyword_for_corenlp_sorted.txt')
parser.add_argument('-dups_info_home', type=str,
default='process_json/duplicates_w_kp20k_training')
opts = parser.parse_args()
filter_dups(saved_home=opts.saved_home, dups_info_home=opts.dups_info_home, context_file_path=opts.context_file_path, keyword_file_path=opts.keyword_file_path)