-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_predicted_bert.py
318 lines (294 loc) · 13.3 KB
/
train_predicted_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn
import transformers as trf
import fastNLP as fnlp
import os
class BertPredictModel(nn.Module):
def __init__(self, from_pretrained: str, vocab=None):
super().__init__()
self.vocab = vocab
# self.bert = fnlp.embeddings.BertEmbedding(vocab, from_pretrained)
self.tokenizer = trf.BertTokenizer.from_pretrained(from_pretrained)
self.bert = trf.BertModel.from_pretrained(from_pretrained)
self.predict = nn.Linear(768, 3)
self.activate = nn.Sigmoid()
self.check_device = nn.Parameter(torch.zeros(1, 1), requires_grad=False)
self.mse_loss = nn.MSELoss()
def forward(self, pred_str, target_str=None, score1=None, score2=None):
inputs = self.tokenizer(f'{target_str} [SEP] {pred_str}', return_tensors="pt")
inputs = {n: p.to(self.check_device.device) for n, p in inputs.items()}
outputs = self.bert(**inputs)
predicted_logits = self.predict(outputs[1]).squeeze(-1)
# predicted_logits = self.predict(outputs.pooler_output).squeeze(-1)
predicted_score = self.activate(predicted_logits)
loss = None
if score1 is not None:
score_tensor = torch.tensor([[score1, score2, (score1 + score2) / 2]]).to(self.check_device.device)
loss = self.mse_loss(predicted_score, score_tensor)
return predicted_score, loss
# if not isinstance(pred_str, str):
# outputs = self.bert(pred_str)[:, 0]
# predicted_score = self.activate(self.predict(outputs).squeeze(-1))
# return predicted_score, None
#
# input_str = f'{target_str} [SEP] {pred_str}'
# input_tensor = torch.tensor([[self.vocab.to_index(w) for w in input_str.split(' ')]]).to(self.check_device.device)
# outputs = self.bert(input_tensor)
# predicted_logits = self.predict(outputs[:,0]).squeeze(-1)
# bert_predicted_score = self.activate(predicted_logits)
# model_loss = None
# if score1 is not None:
# score_tensor = torch.tensor([[score1, score2, (score1 + score2) / 2]]).to(self.check_device.device)
# model_loss = self.mse_loss(bert_predicted_score, score_tensor)
#
# return bert_predicted_score, model_loss
@classmethod
def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs):
vocab = kwargs.pop('vocab', None)
model = cls(model_dir_or_name, vocab)
if not os.path.exists(os.path.join(model_dir_or_name, 'predict_tensor.pkl')):
print(f'only load pretrain model from `{model_dir_or_name}`!')
return model
with open(os.path.join(model_dir_or_name, 'predict_tensor.pkl'), 'rb') as f:
predict_state_dict = torch.load(f, map_location='cpu')
model.predict.load_state_dict(predict_state_dict)
print(f'load predict parameters from `{model_dir_or_name}`!')
return model
def save_pretrained(self, model_dir_or_name, *inputs, **kwargs):
if not os.path.exists(model_dir_or_name):
os.makedirs(model_dir_or_name)
self.bert.save_pretrained(model_dir_or_name)
with open(os.path.join(model_dir_or_name, 'predict_tensor.pkl'), 'wb') as f:
torch.save(self.predict.state_dict(), f)
# if __name__ == '__main__':
# with open('/remote-home/ygxu/workspace/KG/KGM/score_data.txt', 'r') as f:
# lines = f.readlines()
# # lines = lines[:1000]
#
# model = BertPredictModel("bert-base-uncased")
# model = model.cuda()
#
# for n, p in model.named_parameters():
# if 'bert' in n:
# p.requires_grad = True
#
# optim = torch.optim.AdamW(model.parameters(), lr=2e-5)
# update_every = 16
#
#
# from datetime import datetime
# import random
# import numpy as np
#
#
# seed = 42
#
# # set random seed
# random.seed(seed)
# np.random.seed(seed)
# torch.manual_seed(seed)
#
# n_gpu = torch.cuda.device_count()
# if n_gpu > 0:
# torch.cuda.manual_seed_all(seed)
#
# save_root_dir = '/remote-home/ygxu/workspace/KG/KGM/BERT/new-bert-base-uncased'
# total_steps = 0
# total_epoch = 1
# print_steps = 500
# save_every = 5000
# neg_example = []
# total_neg = 0
# total_pos = 0
# now_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f'))
# print(f'start traing at time {now_time}')
# print(f'{"="*20}')
# try:
# for epoch in range(total_epoch):
# steps = 0
# avg_loss = 0
# optim.zero_grad()
# for idx, line in enumerate(lines):
# target_str, pred_str, score1, score2 = line.strip().split('\t')
# if float(score1) == 0 and float(score2) == 0:
# if len(neg_example) == 0:
# neg_example.append((target_str, pred_str, score1, score2))
# continue
# elif neg_example[0][1] != pred_str:
# rand_idx = random.randint(0, len(neg_example) - 1)
# neg_example.append((target_str, pred_str, score1, score2))
# target_str, pred_str, score1, score2 = neg_example[rand_idx]
# neg_example = neg_example[-1:]
# total_neg += 1
# else:
# neg_example.append((target_str, pred_str, score1, score2))
# continue
# else:
# total_pos += 1
# predicted_score, loss = model(pred_str, target_str, float(score1), float(score2))
# if loss is not None:
# if float(score1) == 0 and float(score2) == 0:
# loss = loss / 2
# loss = loss / update_every
# avg_loss += loss.item()
# loss.backward()
# steps += 1
# if steps >= update_every or idx == len(lines) - 1:
# steps = 0
# optim.step()
# optim.zero_grad()
# total_steps += 1
# if total_steps % print_steps == 0 or total_steps == 1:
# avg_loss /= print_steps
# now_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f'))
# print(f'[{now_time}][epoch {epoch + 1} of {total_epoch}; step {total_steps}: loss {round(avg_loss, 6)}]')
# print(f'[target_str: `{target_str}`; pred_str: `{pred_str}`; predicted_score: {predicted_score};]')
# print(f'[idx: {idx}][score1: {round(float(score1), 4)}; score2: {round(float(score2), 4)}]')
# print(f'[total_neg: {total_neg}; total_pos: {total_pos}]')
# print(f'{"="*20}')
# avg_loss = 0
# if total_steps % save_every == 0:
# model.save_pretrained(f'{save_root_dir}-{total_steps // 1000}k')
# print(f'save pretrained to dir `{save_root_dir}-{total_steps // 1000}k`.')
# except BaseException as e:
# print(f'exit with exception `{e.__class__.__name__}`.')
# print(f'[{str(datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f"))}]: have update for {total_steps}')
#
# model.save_pretrained(f'{save_root_dir}-{total_steps // 1000}k')
# print(f'save pretrained to dir `{save_root_dir}-{total_steps // 1000}k`.')
if __name__ == '__main__':
with open('/remote-home/ygxu/workspace/KG/KGM/score_data_new.txt', 'r') as f:
lines = f.readlines()
lines = lines[:10000]
save_root_dir = '/remote-home/ygxu/workspace/KG/KGM/BERT/new-bert-base-uncased-50k'
model = BertPredictModel.from_pretrained(save_root_dir)
model = model.cuda()
model.eval()
for n, p in model.named_parameters():
if 'bert' in n:
p.requires_grad = False
from datetime import datetime
import random
import numpy as np
now_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f'))
print(f'start at time {now_time}')
print(f'{"=" * 20}')
stat_0 = [0] * 12
stat_1 = [0] * 12
stat_2 = [0] * 12
stat_3 = [0] * 12
with torch.no_grad():
with open('/remote-home/ygxu/workspace/KG/KGM/human_evaluate.txt', 'w') as f:
for idx, line in enumerate(lines):
target_str, pred_str = line.strip().split('\t')
predicted_score, loss = model(pred_str, target_str) # [1,3]
if len(predicted_score.size()) == 2:
predicted_score = predicted_score.squeeze(0)
score_list = predicted_score.tolist()
# if score_list[0] == 0.:
# stat_0[0] += 1
# elif 0 < score_list[0] <= 0.1:
# stat_0[1] += 1
# elif 0 < score_list[0] <= 0.2:
# stat_0[2] += 1
# elif 0 < score_list[0] <= 0.3:
# stat_0[3] += 1
# elif 0 < score_list[0] <= 0.4:
# stat_0[4] += 1
# elif 0 < score_list[0] <= 0.5:
# stat_0[5] += 1
# elif 0 < score_list[0] <= 0.6:
# stat_0[6] += 1
# elif 0 < score_list[0] <= 0.7:
# stat_0[7] += 1
# elif 0 < score_list[0] <= 0.8:
# stat_0[8] += 1
# elif 0 < score_list[0] <= 0.9:
# stat_0[9] += 1
# elif 0 < score_list[0] < 1.:
# stat_0[10] += 1
# elif score_list[0] == 1.:
# stat_0[11] += 1
#
# if score_list[1] == 0.:
# stat_1[0] += 1
# elif 0 < score_list[1] <= 0.1:
# stat_1[1] += 1
# elif 0 < score_list[1] <= 0.2:
# stat_1[2] += 1
# elif 0 < score_list[1] <= 0.3:
# stat_1[3] += 1
# elif 0 < score_list[1] <= 0.4:
# stat_1[4] += 1
# elif 0 < score_list[1] <= 0.5:
# stat_1[5] += 1
# elif 0 < score_list[1] <= 0.6:
# stat_1[6] += 1
# elif 0 < score_list[1] <= 0.7:
# stat_1[7] += 1
# elif 0 < score_list[1] <= 0.8:
# stat_1[8] += 1
# elif 0 < score_list[1] <= 0.9:
# stat_1[9] += 1
# elif 0 < score_list[1] < 1.:
# stat_1[10] += 1
# elif score_list[1] == 1.:
# stat_1[11] += 1
#
#
# if score_list[2] == 0.:
# stat_2[0] += 1
# elif 0 < score_list[2] <= 0.1:
# stat_2[1] += 1
# elif 0 < score_list[2] <= 0.2:
# stat_2[2] += 1
# elif 0 < score_list[2] <= 0.3:
# stat_2[3] += 1
# elif 0 < score_list[2] <= 0.4:
# stat_2[4] += 1
# elif 0 < score_list[2] <= 0.5:
# stat_2[5] += 1
# elif 0 < score_list[2] <= 0.6:
# stat_2[6] += 1
# elif 0 < score_list[2] <= 0.7:
# stat_2[7] += 1
# elif 0 < score_list[2] <= 0.8:
# stat_2[8] += 1
# elif 0 < score_list[2] <= 0.9:
# stat_2[9] += 1
# elif 0 < score_list[2] < 1.:
# stat_2[10] += 1
# elif score_list[2] == 1.:
# stat_2[11] += 1
#
# if (score_list[0] + score_list[1]) / 2 == 0.:
# stat_3[0] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.1:
# stat_3[1] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.2:
# stat_3[2] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.3:
# stat_3[3] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.4:
# stat_3[4] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.5:
# stat_3[5] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.6:
# stat_3[6] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.7:
# stat_3[7] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.8:
# stat_3[8] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 <= 0.9:
# stat_3[9] += 1
# elif 0 < (score_list[0] + score_list[1]) / 2 < 1.:
# stat_3[10] += 1
# elif (score_list[0] + score_list[1]) / 2 == 1.:
# stat_3[11] += 1
if score_list[2]>0.05 and score_list[2] < 0.95:
f_str = f'{target_str}\t{pred_str}\t{score_list[2]}\n'
f.write(f_str)
print(str(stat_0))
print(str(stat_1))
print(str(stat_2))
print(str(stat_3))