-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_inference_bert.py
404 lines (352 loc) · 15.8 KB
/
batch_inference_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import argparse
import random
from copy import deepcopy
import torch
from fastNLP import (logger, Trainer, Tester, AccuracyMetric, RandomSampler,
SequentialSampler, EvaluateCallback, DataSet)
import fastNLP
from transformers import (
T5Tokenizer,
RobertaTokenizer,
BertTokenizer,
Adafactor,
AdamW
)
from revmux.utils import (set_random_seed, set_file_handler, get_data,
DataLoader, construct_true_few_shot_data,
set_input_target)
from revmux.nn_modules_bert import ReversibleBatchInference, VanillaAdapterBatchInference
from revmux.evaluation import evaluation_test
from revmux.optim import DoubleOptimizer
MAX_LENGTH=256
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='bert-base-uncased')
parser.add_argument('--task_name', type=str, choices=[
'sst-2', 'rte', 'qnli', 'mrpc'
])
parser.add_argument('--model_type', type=str, choices=[
'pt', 'adapter', 'ora', 'revmux'
], default='revmux')
parser.add_argument('--add_cos_sim', type=int, choices=[-1, 0, 1], default=1)
parser.add_argument('--n_prompt_tokens', type=int, default=50)
parser.add_argument('--combine_first', type=int, default=3)
parser.add_argument('--compose_size', type=int, default=2)
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument('--prompt_lr', type=float, default=0.3)
parser.add_argument('--adapter_lr', type=float, default=2e-5)
parser.add_argument('--lambda_info_nce', type=float, default=0.25)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--k_shot', type=int, default=0)
parser.add_argument('--testing_time', type=int, default=10)
parser.add_argument('--n_epochs', type=int, default=10)
parser.add_argument('--data_dir', type=str, default='/path/to/your/data/dir')
parser.add_argument('--save_dir', type=str, default='.')
arg = parser.parse_args()
logger.info(f'Args: {arg.__dict__}')
torch.autograd.set_detect_anomaly(True)
model_name = arg.model_name
task_name = arg.task_name
add_cos_sim = arg.add_cos_sim
n_prompt_tokens = arg.n_prompt_tokens
combine_first = arg.combine_first
compose_size = arg.compose_size
seed = arg.random_seed
tune_backbone = True
prompt_lr = arg.prompt_lr
adapter_lr = arg.adapter_lr
lambda_info_nce = arg.lambda_info_nce
batch_size = arg.batch_size
k_shot = arg.k_shot
testing_time = arg.testing_time
n_epochs = arg.n_epochs
model_type = arg.model_type
data_dir = arg.data_dir
save_dir = arg.save_dir
task_name_to_data_dir = {
'sst-2': 'SST-2',
'rte': 'RTE',
'qnli': 'QNLI',
'mrpc': 'MRPC',
}
if task_name in task_name_to_data_dir:
data_dir = os.path.join(data_dir, task_name_to_data_dir[task_name])
back_bone_type = 'bert'
label_convert = lambda x: x
if back_bone_type in ['bert']:
if task_name in ['sst-2']:
label_convert = lambda x: 0 if x == 4997 else (1 if x == 3893 else 2)
target_index = [0, 1]
elif task_name in ['rte', 'qnli', 'mrpc']:
label_convert = lambda x: 0 if x == 2053 else (1 if x == 2748 else 2)
target_index = [0, 1]
else:
raise NotImplementedError
else:
raise NotImplementedError
if back_bone_type in ['bert']:
if 'muxbert' in model_name or 'bert_base' in model_name:
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
else:
tokenizer = BertTokenizer.from_pretrained(model_name)
else:
raise NotImplementedError
Loader = DataLoader[back_bone_type]
data_bundle, data_loader = get_data(task_name=task_name, tokenizer=tokenizer,
n_prompt_tokens=n_prompt_tokens, data_loader_dict=Loader,
data_dir=data_dir)
if task_name in ['rte', 'qnli', 'mrpc', 'qqp']:
data_bundle.set_dataset(data_bundle.get_dataset('dev'), 'test')
if task_name in ['ag', 'imdb']:
data_bundle.set_dataset(data_bundle.get_dataset('test'), 'dev')
if task_name in ['sst-2', 'rte', 'ag', 'imdb', 'snli', 'qnli', 'mrpc', 'qqp']:
train_data, dev_data, test_data = \
data_bundle.get_dataset('train'), data_bundle.get_dataset('dev'), data_bundle.get_dataset('test')
else:
raise NotImplementedError
if k_shot > 0:
train_data, dev_data = construct_true_few_shot_data(train_data, k_shot)
@fastNLP.cache_results(f'data_{task_name}_ft_bert.pkl')
def load_large_scale_data():
trn = data_loader.pre_process(train_data)
val = data_loader.pre_process(dev_data)
tst = data_loader.pre_process(test_data)
return trn, val, tst
if len(train_data) >= 50000:
train_data, dev_data, test_data = load_large_scale_data()
else:
train_data = data_loader.pre_process(train_data)
dev_data = data_loader.pre_process(dev_data)
test_data = data_loader.pre_process(test_data)
train_data.apply(lambda x: label_convert(x['labels']), new_field_name='labels',
is_input=True, is_target=True)
train_data.apply(lambda x: [label_convert(k) for k in x['target_ids']],
new_field_name='target_ids', is_input=True, is_target=False)
if task_name in ['qnli']:
train_data.apply(lambda x: x['input_ids'][:MAX_LENGTH],
new_field_name='input_ids', is_input=True, is_target=False)
train_data.apply(lambda x: x['attention_mask'][:MAX_LENGTH],
new_field_name='attention_mask', is_input=True, is_target=False)
dev_data.apply(lambda x: label_convert(x['labels']), new_field_name='labels',
is_input=True, is_target=True)
dev_data.apply(lambda x: [label_convert(k) for k in x['target_ids']],
new_field_name='target_ids', is_input=True, is_target=False)
if task_name in ['sst-2']:
dev_data.apply(lambda x: (x['input_ids'] + [0] * 128)[:128], new_field_name='input_ids',
is_input=True, is_target=False)
dev_data.apply(lambda x: (x['attention_mask'] + [0] * 128)[:128],
new_field_name='attention_mask',
is_input=True, is_target=False)
elif task_name in ['qnli']:
test_data.apply(lambda x: (x['input_ids'] + [0] * 128)[:128], new_field_name='input_ids',
is_input=True, is_target=False)
test_data.apply(lambda x: (x['attention_mask'] + [0] * 128)[:128],
new_field_name='attention_mask',
is_input=True, is_target=False)
test_data.apply(lambda x: label_convert(x['labels']), new_field_name='labels',
is_input=True, is_target=True)
test_data.apply(lambda x: [label_convert(k) for k in x['target_ids']],
new_field_name='target_ids', is_input=True, is_target=False)
if task_name in ['sst-2']:
dev_random_seed = 4141
elif task_name in ['rte', 'qnli', 'mrpc']:
dev_random_seed = 4040
else:
raise NotImplementedError
set_random_seed(dev_random_seed)
new_dev_data = fastNLP.DataSet()
idx_list = [_ for _ in range(len(dev_data))]
for _ in range(10):
random.shuffle(idx_list)
for idx in idx_list:
new_dev_data.append(dev_data[idx])
original_dev_data = deepcopy(dev_data)
dev_data = set_input_target(new_dev_data)
logger.info(f'successfully append dev data 10 times.')
logger.info('Number of train data: {}'.format(len(train_data)))
logger.info(f'Example:\n{train_data[0]}')
logger.info('Number of dev data: {}'.format(len(dev_data)))
logger.info(f'Example:\n{dev_data[0]}')
logger.info('Number of test data: {}'.format(len(test_data)))
logger.info(f'Example:\n{test_data[0]}')
if task_name in ['sst-2']:
set_random_seed(4141)
idx_list = [_ for _ in range(len(test_data))]
sst_test_data = DataSet()
for _ in range(testing_time):
random.shuffle(idx_list)
for idx in idx_list:
sst_test_data.append(test_data[idx])
sst_test_data = set_input_target(sst_test_data)
logger.info(f'successfully append test data 10 times for {task_name}.')
else:
sst_test_data = None
set_random_seed(seed)
callback_list = []
if model_type in ['ora']:
model = ReversibleBatchInference(
model_name=model_name,
n_prompt_tokens=n_prompt_tokens,
init_prompt=None,
combine_first=combine_first,
target_index=target_index,
compose_size=compose_size,
compute_similarity=add_cos_sim,
use_ada_prompt=False,
)
elif model_type in ['revmux']:
model = ReversibleBatchInference(
model_name=model_name,
n_prompt_tokens=n_prompt_tokens,
init_prompt=None,
target_index=target_index,
combine_first=combine_first,
compose_size=compose_size,
compute_similarity=add_cos_sim,
invertible_decompose=True,
use_ada_prompt=False,
lambda_info_nce=lambda_info_nce,
)
elif model_type in ['adapter']:
model = VanillaAdapterBatchInference(
model_name=model_name,
n_prompt_tokens=n_prompt_tokens,
init_prompt=None,
combine_first=combine_first,
target_index=target_index,
compose_size=compose_size,
compute_similarity=(add_cos_sim == 1),
use_ada_prompt=False,
)
else:
raise NotImplementedError
with open(f'./ft-{task_name}-{model_name}.pkl', 'rb') as f:
pre_trained_model = torch.load(f, map_location='cpu')
model.model.bert.load_state_dict(pre_trained_model['bert'])
model.model.classifier.load_state_dict(pre_trained_model['classifier'])
logger.info(f'Successfully load pre-trained weights.')
if back_bone_type in ['bert']:
logger.info(f'Check Teacher-Only Mode for {back_bone_type.upper()} backbone.')
model.mode = 'teacher_only'
tester = Tester(
test_data,
model,
AccuracyMetric(pred='logits', target='labels'),
batch_size=32,
device=[_ for _ in range(torch.cuda.device_count())],
sampler=SequentialSampler()
)
eval_results = tester.test()
teacher_acc = eval_results['AccuracyMetric']['acc']
logger.info(f'Accuracy of Teacher-Only mode is: {round(teacher_acc, 4)}')
if task_name in ['sst-2']:
sst_tester = Tester(
dev_data,
model,
AccuracyMetric(pred='logits', target='labels'),
batch_size=32,
device=[_ for _ in range(torch.cuda.device_count())],
sampler=SequentialSampler()
)
sst_eval_results = sst_tester.test()
teacher_dev_acc = sst_eval_results['AccuracyMetric']['acc']
logger.info(f'Accuracy of Teacher-Only mode for dev data is: {round(teacher_dev_acc, 4)}')
logger.info(f'successfully init `{model.__class__.__name__}` model.')
no_decay = ['bias', 'LayerNorm.weight']
if model_type in ['adapter']:
adapter_parameters = [
{'params': [p for n, p in model.model.decompose.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.model.decompose.named_parameters()
if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
{'params': [p for n, p in model.adapter.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.adapter.named_parameters() if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
{'params': [p for n, p in model.mapping.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.mapping.named_parameters() if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
]
adapter_optimizer = AdamW(
adapter_parameters,
lr=adapter_lr,
)
optimizer = adapter_optimizer
elif model_type in ['ora', 'revmux']:
adapter_parameters = [
{'params': [p for n, p in model.model.decompose_up_projection.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.model.decompose_up_projection.named_parameters()
if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
{'params': [p for n, p in model.f_adapter.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.f_adapter.named_parameters() if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
{'params': [p for n, p in model.down_projection.named_parameters() if any([pn in n for pn in no_decay])],
'weight_decay': 0.0},
{'params': [p for n, p in model.down_projection.named_parameters() if not any([pn in n for pn in no_decay])],
'weight_decay': 0.01},
]
adapter_optimizer = AdamW(
adapter_parameters,
lr=adapter_lr,
)
optimizer = adapter_optimizer
else:
prompt_grouped_parameters = [
{'params': [p for p in model.prompt.parameters()],
'weight_decay': 0.0},
]
optimizer = Adafactor(
prompt_grouped_parameters,
lr=prompt_lr,
relative_step=False,
scale_parameter=False,
warmup_init=False
)
model.mode = 'normal'
optimizer = DoubleOptimizer([optimizer])
logger.info(f'Total Param: {optimizer.total_optim_param}')
if task_name in ['sst-2']:
callback_list.append(EvaluateCallback(sst_test_data))
set_random_seed(seed)
trainer = Trainer(
train_data=train_data,
model=model,
optimizer=optimizer,
batch_size=batch_size,
# drop_last=True,
update_every=1,
print_every=1,
n_epochs=n_epochs,
dev_data=dev_data,
metrics=AccuracyMetric(pred='logits', target='labels'),
metric_key='acc',
device=[_ for _ in range(torch.cuda.device_count())],
callbacks=callback_list,
check_code_level=-1,
)
trainer.train()
if task_name in ['sst-2']:
evaluation_test(10, original_dev_data, model, task_name, set_batch_size=32)
else:
evaluation_test(testing_time, test_data, model, task_name, set_batch_size=32)
if save_dir is not None:
model.to('cpu')
model_dict = {}
if model_type in ['adapter']:
model_dict['mapping'] = model.mapping.state_dict()
model_dict['adapter'] = model.adapter.state_dict()
model_dict['decompose'] = model.model.decompose.state_dict()
if model_type in ['ora', 'revmux']:
model_dict['down_projection'] = model.down_projection.state_dict()
model_dict['f_adapter'] = model.f_adapter.state_dict()
model_dict['bert'] = model.model.bert.state_dict()
model_dict['decompose_up_projection'] = model.model.decompose_up_projection.state_dict()
with open(f'{save_dir}/{model_name}-{model_type}-model.pkl', 'wb') as f:
torch.save(model_dict, f)
logger.info(f'successfully save model to file `{save_dir}/{model_name}-{model_type}-model.pkl`.')