-
Notifications
You must be signed in to change notification settings - Fork 398
/
Copy pathrun.py
183 lines (147 loc) · 9.06 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import torch
import argparse
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from run_mv_prediction import load_wonder3d_pipeline, pred_multiview_joint
from run_mv_enhancement import load_controlnet_pipeline, pred_enhancement_joint
from MVMeshRecon.Coarse_recon import coarse_recon
from MVMeshRecon.Iterative_refine import iterative_refine
from MVMeshRecon.utils.refine_lr_to_sr import sr_front
from rembg import remove
# step 1: Load input image and configuration
device = torch.device('cuda:0')
parser = argparse.ArgumentParser()
parser.add_argument('--config_mvdiffusion', type=str, default='configs/mvdiffusion-joint.yaml', help='Path to multi-view diffusion config.')
parser.add_argument('--config_controlnet', type=str, default='configs/controlnet.yaml', help='Path to enhancement controlnet config')
parser.add_argument('--input_path', type=str, default='example_images', help='Path to input image or directory.')
parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.')
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.')
parser.add_argument('--crop_size', type=int, default=192, help='Crop size of the input image, this is a relative num that assume the resolution of input image is 256.')
parser.add_argument('--camera_type', type=str, default='ortho', help='ortho or persp')
parser.add_argument('--num_refine',type=int, default=2, help='number of iterative refinement')
args = parser.parse_args()
config_mv = OmegaConf.load(args.config_mvdiffusion)
config_controlnet = OmegaConf.load(args.config_controlnet)
def views_6to4(imgs):
outs = []
for i in range(6):
if i == 1 or i == 5:
continue
outs.append(imgs[i])
return outs
def add_margin(pil_img, color=0, size=256):
width, height = pil_img.size
result = Image.new(pil_img.mode, (size, size), color)
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
return result
def process_image(image_input, image_size=2048, crop_size=2048*0.75):
if np.asarray(image_input).shape[-1] == 3:
image_input = remove(image_input)
if crop_size != -1:
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
width, height = ref_img_.size
# upsamle the input image if the quality of input image is quite low
if width < 400 or height < 400:
ref_img_ = sr_front(ref_img_)
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_))
image_input = add_margin(ref_img_, size=image_size)
else:
image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
image_input = image_input.resize((image_size, image_size))
return image_input
# load input image
if os.path.isdir(args.input_path):
input_files = [
os.path.join(args.input_path, file)
for file in os.listdir(args.input_path)
if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp')
]
else:
input_files = [args.input_path]
print(f'Total number of input images: {len(input_files)}')
print('Loading mv diffusion pipeline ...')
mv_pipeline = load_wonder3d_pipeline(config_mv).to(device)
print('Loading mv enhancement pipeline ...')
enhancement_pipeline = load_controlnet_pipeline(config_controlnet).to(device)
normals_mv_out, imgs_mv_out = [], []
for i, image_file in enumerate(input_files):
try:
# step 2: Multiview inference
# preprocess the input image
input_image = Image.open(image_file)
input_image = process_image(image_input=input_image, crop_size=args.crop_size*8, image_size=2048)
# save front image
os.makedirs(os.path.join(args.output_path, os.path.basename(image_file).split('.')[0]), exist_ok=True)
input_image.save(os.path.join(args.output_path, os.path.basename(image_file).split('.')[0], 'front_img.png'))
normals_pred, images_pred = pred_multiview_joint(input_image,
mv_pipeline,
seed=args.seed,
crop_size=args.crop_size,
camera_type=args.camera_type,
cfg=config_mv,
case_name=image_file,
output_path=args.output_path)
normals_mv_out.append((normals_pred))
imgs_mv_out.append((images_pred))
# stage 3: Geometric initialize and coarse reconstruction
vertices_init_list, faces_init_list = [], []
rendered_imgs, rendered_normals = [], []
mv_normals, mv_imgs = normals_mv_out[i], imgs_mv_out[i]
rendered_rgbs, rendered_normal, vertices, faces = coarse_recon(front_image=input_image,
rgbs=mv_imgs,
normals=mv_normals,
camera_type=args.camera_type,
scence_name=os.path.basename(image_file).split('.')[0],
crop_size=args.crop_size,
output_path=args.output_path)
vertices_init_list.append(vertices)
faces_init_list.append(faces)
rendered_imgs.append(rendered_rgbs)
rendered_normals.append(rendered_normal)
# stage 4: MV-Enhancement and iterative refinement
mv_normals, mv_imgs = views_6to4(normals_mv_out[i]), views_6to4(imgs_mv_out[i])
for refine_idx in range(args.num_refine):
refined_vertices, refined_faces, rendered_refined_imgs, rendered_refined_normals = [], [], [], []
rendered_mv_normals, rendered_mv_imgs = rendered_normals.pop(0), rendered_imgs.pop(0)
normals_pred, images_pred = pred_enhancement_joint(mv_image=mv_imgs,
mv_normlas=mv_normals,
renderd_mv_image=rendered_mv_imgs,
renderd_mv_normal=rendered_mv_normals,
front_image=input_image,
pipeline=enhancement_pipeline,
seed=args.seed,
crop_size=args.crop_size,
camera_type=args.camera_type,
cfg=config_controlnet,
case_name=image_file,
refine_idx=refine_idx,
output_path=args.output_path)
vertices_init, faces_init = vertices_init_list.pop(0), faces_init_list.pop(0)
rendered_rgbs, rendered_normal, vertices, faces = iterative_refine(vertex_init=vertices_init,
face_init=faces_init,
front_image=input_image,
rgbs=images_pred,
normals=normals_pred,
camera_type=args.camera_type,
scence_name=os.path.basename(image_file).split('.')[0],
crop_size=args.crop_size,
output_path=args.output_path,
refine_idx=refine_idx,
do_sr=(refine_idx==(args.num_refine-1))
)
vertices_init_list.append(vertices)
faces_init_list.append(faces)
rendered_imgs.append(rendered_rgbs)
rendered_normals.append(rendered_normal)
torch.cuda.empty_cache()
except AssertionError as e:
print(f"error for {image_file}")