-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
185 lines (152 loc) · 6.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import numpy as np
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
from utils import progress_bar
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from torch.utils.tensorboard import SummaryWriter
import datetime
from cosine_annealing_warmup import CosineAnnealingWarmupRestarts
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--save-dir', default='save_temp', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--ls', default=0, type=float)
parser.add_argument('--device', default=0, type=int)
parser.add_argument('--alpha', default=1., type=float)
args = parser.parse_args()
torch.cuda.set_device(args.device)
torch.manual_seed(args.seed)
device = 'cuda'
best_acc = 0
start_epoch = 0
today = datetime.datetime.now()
writer = SummaryWriter(args.save_dir+"/"+today.strftime("%Y%m%d%H%M%S"))
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
# transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=8)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=8)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
y_pred = []
y_true = []
print('==> Building model..')
net = ResNet50()
net = net.to(device)
if device == 'cuda':
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss(label_smoothing=args.ls)
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
# scheduler = CosineAnnealingWarmupRestarts(optimizer,
# first_cycle_steps=200,
# cycle_mult=1.0,
# max_lr=0.1,
# min_lr=0.001,
# warmup_steps=5,
# gamma=1.0)
def mixup_data(x, y, alpha=1.0):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
index = torch.randperm(batch_size).cuda()
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
reg_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets_a, targets_b, lam = mixup_data(inputs, targets, args.alpha)
inputs, targets_a, targets_b = map(Variable, (inputs, targets_a, targets_b))
outputs = net(inputs)
loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
train_loss += loss.data
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (lam * predicted.eq(targets_a.data).cpu().sum().float()
+ (1 - lam) * predicted.eq(targets_b.data).cpu().sum().float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
progress_bar(batch_idx, len(trainloader),
'Loss: %.3f | Reg: %.5f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), reg_loss/(batch_idx+1),
100.*correct/total, correct, total))
writer.add_scalar("Loss/Train", train_loss/(batch_idx+1), epoch)
writer.add_scalar("Accuracy/Train", 100.*correct/total, epoch)
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if epoch + 1 == start_epoch + 200:
y_pred.extend(predicted.data.cpu().numpy())
y_true.extend(targets.data.cpu().numpy())
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
writer.add_scalar("Loss/Test", test_loss/(batch_idx+1), epoch)
writer.add_scalar("Accuracy/Test", 100.*correct/total, epoch)
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
best_acc = acc
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()
print("Best Acc =", best_acc)
cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index = [i for i in classes],
columns = [i for i in classes])
plt.figure(figsize = (12,7))
sn.heatmap(df_cm, annot=True)
plt.savefig('output.png')