-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
202 lines (163 loc) · 7.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# System libs
import os
import datetime
import argparse
from distutils.version import LooseVersion
# Numerical libs
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from scipy.io import loadmat
# Our libs
from dataset import ValDataset
from models import ModelBuilder, SegmentationModule
from utils import AverageMeter, colorEncode, accuracy, intersectionAndUnion
from lib.nn import user_scattered_collate, async_copy_to
from lib.utils import as_numpy, mark_volatile
import lib.utils.data as torchdata
import cv2
def visualize_result(data, preds, args):
colors = loadmat('data/color150.mat')['colors']
(img, seg, info) = data
# segmentation
seg_color = colorEncode(seg, colors)
# prediction
pred_color = colorEncode(preds, colors)
# aggregate images and save
im_vis = np.concatenate((img, seg_color, pred_color),
axis=1).astype(np.uint8)
img_name = info.split('/')[-1]
cv2.imwrite(os.path.join(args.result,
img_name.replace('.jpg', '.png')), im_vis)
def evaluate(segmentation_module, loader, args):
acc_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
segmentation_module.eval()
for i, batch_data in enumerate(loader):
# process data
batch_data = batch_data[0]
seg_label = as_numpy(batch_data['seg_label'][0])
img_resized_list = batch_data['img_data']
with torch.no_grad():
segSize = (seg_label.shape[0], seg_label.shape[1])
pred = torch.zeros(1, args.num_class, segSize[0], segSize[1])
pred = Variable(pred).cuda()
for img in img_resized_list:
feed_dict = batch_data.copy()
feed_dict['img_data'] = img
del feed_dict['img_ori']
del feed_dict['info']
feed_dict = async_copy_to(feed_dict, args.gpu_id)
# forward pass
pred_tmp = segmentation_module(feed_dict, segSize=segSize)
pred = pred + pred_tmp / len(args.imgSize)
_, preds = torch.max(pred.data.cpu(), dim=1)
preds = as_numpy(preds.squeeze(0))
# calculate accuracy
acc, pix = accuracy(preds, seg_label)
intersection, union = intersectionAndUnion(preds, seg_label, args.num_class)
acc_meter.update(acc, pix)
intersection_meter.update(intersection)
union_meter.update(union)
print('[{}] iter {}, accuracy: {}'
.format(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
i, acc))
# visualization
if args.visualize:
visualize_result(
(batch_data['img_ori'], seg_label, batch_data['info']),
preds, args)
iou = intersection_meter.sum / (union_meter.sum + 1e-10)
for i, _iou in enumerate(iou):
print('class [{}], IoU: {}'.format(i, _iou))
print('[Eval Summary]:')
print('Mean IoU: {:.4}, Accuracy: {:.2f}%'
.format(iou.mean(), acc_meter.average()*100))
def main(args):
torch.cuda.set_device(args.gpu_id)
# Network Builders
builder = ModelBuilder()
net_encoder = builder.build_encoder(arch=args.arch_encoder,
fc_dim=args.fc_dim,
weights=args.weights_encoder)
net_decoder = builder.build_decoder(arch=args.arch_decoder,
fc_dim=args.fc_dim,
weights=args.weights_decoder,
use_softmax=True)
crit = nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
# Dataset and Loader
dataset_val = ValDataset(
args.list_val, args, max_sample=args.num_val)
loader_val = torchdata.DataLoader(
dataset_val,
batch_size=args.batch_size,
shuffle=False,
collate_fn=user_scattered_collate,
num_workers=5,
drop_last=True)
segmentation_module.cuda()
# Main loop
evaluate(segmentation_module, loader_val, args)
print('Evaluation Done!')
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser()
# Model related arguments
parser.add_argument('--id', required=True,
help="a name for identifying the model to load")
parser.add_argument('--suffix', default='_epoch_20.pth',
help="which snapshot to load")
parser.add_argument('--arch_encoder', default='resnet50_dilated8',
help="architecture of net_encoder")
parser.add_argument('--arch_decoder', default='ppm_bilinear_deepsup',
help="architecture of net_decoder")
parser.add_argument('--fc_dim', default=2048, type=int,
help='number of features between encoder and decoder')
# Path related arguments
parser.add_argument('--list_val',
default='./data/validation.odgt')
parser.add_argument('--root_dataset',
default='./data/')
# Data related arguments
parser.add_argument('--num_val', default=-1, type=int,
help='number of images to evalutate')
parser.add_argument('--num_class', default=150, type=int,
help='number of classes')
parser.add_argument('--batch_size', default=1, type=int,
help='batchsize. current only supports 1')
parser.add_argument('--imgSize', default=[450], nargs='+', type=int,
help='list of input image sizes.'
'for multiscale testing, e.g. 300 400 500 600')
parser.add_argument('--imgMaxSize', default=1000, type=int,
help='maximum input image size of long edge')
parser.add_argument('--padding_constant', default=8, type=int,
help='maxmimum downsampling rate of the network')
parser.add_argument('--segm_downsampling_rate', default=8, type=int,
help='downsampling rate of the segmentation label')
# Misc arguments
parser.add_argument('--ckpt', default='./ckpt',
help='folder to output checkpoints')
parser.add_argument('--visualize', action='store_true',
help='output visualization?')
parser.add_argument('--result', default='./result',
help='folder to output visualization results')
parser.add_argument('--gpu_id', default=0, type=int,
help='gpu_id for evaluation')
args = parser.parse_args()
print(args)
# torch.cuda.set_device(args.gpu_id)
# absolute paths of model weights
args.weights_encoder = os.path.join(args.ckpt, args.id,
'encoder' + args.suffix)
args.weights_decoder = os.path.join(args.ckpt, args.id,
'decoder' + args.suffix)
assert os.path.exists(args.weights_encoder) and \
os.path.exists(args.weights_encoder), 'checkpoint does not exitst!'
args.result = os.path.join(args.result, args.id)
if not os.path.isdir(args.result):
os.makedirs(args.result)
main(args)