-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
408 lines (340 loc) · 14.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import torch
import torch.nn as nn
import torchvision
import resnet
from lib.nn import SynchronizedBatchNorm2d
class SegmentationModuleBase(nn.Module):
def __init__(self):
super(SegmentationModuleBase, self).__init__()
def pixel_acc(self, pred, label):
_, preds = torch.max(pred, dim=1)
valid = (label >= 0).long()
acc_sum = torch.sum(valid * (preds == label).long())
pixel_sum = torch.sum(valid)
acc = acc_sum.float() / (pixel_sum.float() + 1e-10)
return acc
class SegmentationModule(SegmentationModuleBase):
def __init__(self, net_enc, net_dec, crit, deep_sup_scale=None):
super(SegmentationModule, self).__init__()
self.encoder = net_enc
self.decoder = net_dec
self.crit = crit
self.deep_sup_scale = deep_sup_scale
def forward(self, feed_dict, *, segSize=None):
if segSize is None: # training
if self.deep_sup_scale is not None: # use deep supervision technique
(pred, pred_deepsup) = self.decoder(self.encoder(feed_dict['img_data'], return_feature_maps=True))
else:
pred = self.decoder(self.encoder(feed_dict['img_data'], return_feature_maps=False))
loss = self.crit(pred, feed_dict['seg_label'])
if self.deep_sup_scale is not None:
loss_deepsup = self.crit(pred_deepsup, feed_dict['seg_label'])
loss = loss + loss_deepsup * self.deep_sup_scale
acc = self.pixel_acc(pred, feed_dict['seg_label'])
return loss, acc
else: # inference
pred = self.decoder(self.encoder(feed_dict['img_data']), segSize=segSize)
return pred
def conv3x3(in_planes, out_planes, stride=1, has_bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=has_bias)
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
return nn.Sequential(
conv3x3(in_planes, out_planes, stride),
SynchronizedBatchNorm2d(out_planes),
nn.ReLU(inplace=True),
)
class ModelBuilder():
# custom weights initialization
'''
def weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.001)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.0001)
'''
def build_encoder(self, arch='resnet50_dilated8', fc_dim=512, weights=''):
pretrained = True if len(weights) == 0 else False
if arch == 'resnet34':
raise NotImplementedError
orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
net_encoder = Resnet(orig_resnet)
elif arch == 'resnet34_dilated8':
raise NotImplementedError
orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
net_encoder = ResnetDilated(orig_resnet,
dilate_scale=8)
elif arch == 'resnet34_dilated16':
raise NotImplementedError
orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained)
net_encoder = ResnetDilated(orig_resnet,
dilate_scale=16)
elif arch == 'resnet50':
orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
net_encoder = Resnet(orig_resnet)
elif arch == 'resnet50_dilated8':
orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
net_encoder = ResnetDilated(orig_resnet,
dilate_scale=8)
elif arch == 'resnet50_dilated16':
orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
net_encoder = ResnetDilated(orig_resnet,
dilate_scale=16)
else:
raise Exception('Architecture undefined!')
# net_encoder.apply(self.weights_init)
if len(weights) > 0:
print('Loading weights for net_encoder')
net_encoder.load_state_dict(
torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
return net_encoder
def build_decoder(self, arch='ppm_bilinear_deepsup',
fc_dim=512, num_class=150,
weights='', use_softmax=False):
if arch == 'c1_bilinear_deepsup':
net_decoder = C1BilinearDeepSup(
num_class=num_class,
fc_dim=fc_dim,
use_softmax=use_softmax)
elif arch == 'c1_bilinear':
net_decoder = C1Bilinear(
num_class=num_class,
fc_dim=fc_dim,
use_softmax=use_softmax)
elif arch == 'ppm_bilinear':
net_decoder = PPMBilinear(
num_class=num_class,
fc_dim=fc_dim,
use_softmax=use_softmax)
elif arch == 'ppm_bilinear_deepsup':
net_decoder = PPMBilinearDeepsup(
num_class=num_class,
fc_dim=fc_dim,
use_softmax=use_softmax)
else:
raise Exception('Architecture undefined!')
# net_decoder.apply(self.weights_init)
if len(weights) > 0:
print('Loading weights for net_decoder')
net_decoder.load_state_dict(
torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
return net_decoder
class Resnet(nn.Module):
def __init__(self, orig_resnet):
super(Resnet, self).__init__()
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu1 = orig_resnet.relu1
self.conv2 = orig_resnet.conv2
self.bn2 = orig_resnet.bn2
self.relu2 = orig_resnet.relu2
self.conv3 = orig_resnet.conv3
self.bn3 = orig_resnet.bn3
self.relu3 = orig_resnet.relu3
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
class ResnetDilated(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilated, self).__init__()
from functools import partial
if dilate_scale == 8:
orig_resnet.layer3.apply(
partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=2))
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu1 = orig_resnet.relu1
self.conv2 = orig_resnet.conv2
self.bn2 = orig_resnet.bn2
self.relu2 = orig_resnet.relu2
self.conv3 = orig_resnet.conv3
self.bn3 = orig_resnet.bn3
self.relu3 = orig_resnet.relu3
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate//2, dilate//2)
m.padding = (dilate//2, dilate//2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x, return_feature_maps=False):
conv_out = []
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x); conv_out.append(x);
x = self.layer2(x); conv_out.append(x);
x = self.layer3(x); conv_out.append(x);
x = self.layer4(x); conv_out.append(x);
if return_feature_maps:
return conv_out
return [x]
# last conv, bilinear upsample
class C1BilinearDeepSup(nn.Module):
def __init__(self, num_class=150, fc_dim=2048, use_softmax=False):
super(C1BilinearDeepSup, self).__init__()
self.use_softmax = use_softmax
self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
# last conv
self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
def forward(self, conv_out, segSize=None):
conv5 = conv_out[-1]
x = self.cbr(conv5)
x = self.conv_last(x)
if self.use_softmax: # is True during inference
x = nn.functional.upsample(x, size=segSize, mode='bilinear')
x = nn.functional.softmax(x, dim=1)
return x
# deep sup
conv4 = conv_out[-2]
_ = self.cbr_deepsup(conv4)
_ = self.conv_last_deepsup(_)
x = nn.functional.log_softmax(x, dim=1)
_ = nn.functional.log_softmax(_, dim=1)
return (x, _)
# last conv, bilinear upsample
class C1Bilinear(nn.Module):
def __init__(self, num_class=150, fc_dim=2048, use_softmax=False):
super(C1Bilinear, self).__init__()
self.use_softmax = use_softmax
self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
# last conv
self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
def forward(self, conv_out, segSize=None):
conv5 = conv_out[-1]
x = self.cbr(conv5)
x = self.conv_last(x)
if self.use_softmax: # is True during inference
x = nn.functional.upsample(x, size=segSize, mode='bilinear')
x = nn.functional.softmax(x, dim=1)
else:
x = nn.functional.log_softmax(x, dim=1)
return x
# pyramid pooling, bilinear upsample
class PPMBilinear(nn.Module):
def __init__(self, num_class=150, fc_dim=4096,
use_softmax=False, pool_scales=(1, 2, 3, 6)):
super(PPMBilinear, self).__init__()
self.use_softmax = use_softmax
self.ppm = []
for scale in pool_scales:
self.ppm.append(nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
SynchronizedBatchNorm2d(512),
nn.ReLU(inplace=True)
))
self.ppm = nn.ModuleList(self.ppm)
self.conv_last = nn.Sequential(
nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
kernel_size=3, padding=1, bias=False),
SynchronizedBatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Dropout2d(0.1),
nn.Conv2d(512, num_class, kernel_size=1)
)
def forward(self, conv_out, segSize=None):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(nn.functional.upsample(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode='bilinear'))
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_last(ppm_out)
if self.use_softmax: # is True during inference
x = nn.functional.upsample(x, size=segSize, mode='bilinear')
x = nn.functional.softmax(x, dim=1)
else:
x = nn.functional.log_softmax(x, dim=1)
return x
# pyramid pooling, bilinear upsample
class PPMBilinearDeepsup(nn.Module):
def __init__(self, num_class=150, fc_dim=4096,
use_softmax=False, pool_scales=(1, 2, 3, 6)):
super(PPMBilinearDeepsup, self).__init__()
self.use_softmax = use_softmax
self.ppm = []
for scale in pool_scales:
self.ppm.append(nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
SynchronizedBatchNorm2d(512),
nn.ReLU(inplace=True)
))
self.ppm = nn.ModuleList(self.ppm)
self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
self.conv_last = nn.Sequential(
nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
kernel_size=3, padding=1, bias=False),
SynchronizedBatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Dropout2d(0.1),
nn.Conv2d(512, num_class, kernel_size=1)
)
self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
self.dropout_deepsup = nn.Dropout2d(0.1)
def forward(self, conv_out, segSize=None):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(nn.functional.upsample(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode='bilinear'))
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_last(ppm_out)
if self.use_softmax: # is True during inference
x = nn.functional.upsample(x, size=segSize, mode='bilinear')
x = nn.functional.softmax(x, dim=1)
return x
# deep sup
conv4 = conv_out[-2]
_ = self.cbr_deepsup(conv4)
_ = self.dropout_deepsup(_)
_ = self.conv_last_deepsup(_)
x = nn.functional.log_softmax(x, dim=1)
_ = nn.functional.log_softmax(_, dim=1)
return (x, _)