forked from github/putty
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsshdes.c
1092 lines (985 loc) · 36.8 KB
/
sshdes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <assert.h>
#include "ssh.h"
/* des.c - implementation of DES
*/
/*
* Description of DES
* ------------------
*
* Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
* bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
* And S-boxes are indexed by six consecutive bits, not by the outer two
* followed by the middle four.
*
* The DES encryption routine requires a 64-bit input, and a key schedule K
* containing 16 48-bit elements.
*
* First the input is permuted by the initial permutation IP.
* Then the input is split into 32-bit words L and R. (L is the MSW.)
* Next, 16 rounds. In each round:
* (L, R) <- (R, L xor f(R, K[i]))
* Then the pre-output words L and R are swapped.
* Then L and R are glued back together into a 64-bit word. (L is the MSW,
* again, but since we just swapped them, the MSW is the R that came out
* of the last round.)
* The 64-bit output block is permuted by the inverse of IP and returned.
*
* Decryption is identical except that the elements of K are used in the
* opposite order. (This wouldn't work if that word swap didn't happen.)
*
* The function f, used in each round, accepts a 32-bit word R and a
* 48-bit key block K. It produces a 32-bit output.
*
* First R is expanded to 48 bits using the bit-selection function E.
* The resulting 48-bit block is XORed with the key block K to produce
* a 48-bit block X.
* This block X is split into eight groups of 6 bits. Each group of 6
* bits is then looked up in one of the eight S-boxes to convert
* it to 4 bits. These eight groups of 4 bits are glued back
* together to produce a 32-bit preoutput block.
* The preoutput block is permuted using the permutation P and returned.
*
* Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
* the approved input format for the key is a 64-bit word, eight of the
* bits are discarded, so the actual quantity of key used is 56 bits.
*
* First the input key is converted to two 28-bit words C and D using
* the bit-selection function PC1.
* Then 16 rounds of key setup occur. In each round, C and D are each
* rotated left by either 1 or 2 bits (depending on which round), and
* then converted into a key schedule element using the bit-selection
* function PC2.
*
* That's the actual algorithm. Now for the tedious details: all those
* painful permutations and lookup tables.
*
* IP is a 64-to-64 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
* 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
* 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
* 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
*
* E is a 32-to-48 bit selection function. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
* 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
*
* The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
* 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
* The S-boxes are listed below. The first S-box listed is applied to the
* most significant six bits of the block X; the last one is applied to the
* least significant.
*
* 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
* 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
* 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
* 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
*
* 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
* 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
* 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
* 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
*
* 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
* 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
* 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
* 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
*
* 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
* 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
* 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
* 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
*
* 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
* 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
* 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
* 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
*
* 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
* 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
* 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
* 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
*
* 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
* 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
* 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
* 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
*
* 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
* 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
* 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
* 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
*
* P is a 32-to-32 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
* 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
*
* PC1 is a 64-to-56 bit selection function. Its output is in two words,
* C and D. The word C contains the following bits of its input (listed
* in order MSB to LSB of output).
*
* 7 15 23 31 39 47 55 63 6 14 22 30 38 46
* 54 62 5 13 21 29 37 45 53 61 4 12 20 28
*
* And the word D contains these bits.
*
* 1 9 17 25 33 41 49 57 2 10 18 26 34 42
* 50 58 3 11 19 27 35 43 51 59 36 44 52 60
*
* PC2 is a 56-to-48 bit selection function. Its input is in two words,
* C and D. These are treated as one 56-bit word (with C more significant,
* so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
* 0 of the word are bits 27 to 0 of D). The output contains the following
* bits of this 56-bit input word (listed in order MSB to LSB of output).
*
* 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
* 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
*/
/*
* Implementation details
* ----------------------
*
* If you look at the code in this module, you'll find it looks
* nothing _like_ the above algorithm. Here I explain the
* differences...
*
* Key setup has not been heavily optimised here. We are not
* concerned with key agility: we aren't codebreakers. We don't
* mind a little delay (and it really is a little one; it may be a
* factor of five or so slower than it could be but it's still not
* an appreciable length of time) while setting up. The only tweaks
* in the key setup are ones which change the format of the key
* schedule to speed up the actual encryption. I'll describe those
* below.
*
* The first and most obvious optimisation is the S-boxes. Since
* each S-box always targets the same four bits in the final 32-bit
* word, so the output from (for example) S-box 0 must always be
* shifted left 28 bits, we can store the already-shifted outputs
* in the lookup tables. This reduces lookup-and-shift to lookup,
* so the S-box step is now just a question of ORing together eight
* table lookups.
*
* The permutation P is just a bit order change; it's invariant
* with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
* can apply P to every entry of the S-box tables and then we don't
* have to do it in the code of f(). This yields a set of tables
* which might be called SP-boxes.
*
* The bit-selection function E is our next target. Note that E is
* immediately followed by the operation of splitting into 6-bit
* chunks. Examining the 6-bit chunks coming out of E we notice
* they're all contiguous within the word (speaking cyclically -
* the end two wrap round); so we can extract those bit strings
* individually rather than explicitly running E. This would yield
* code such as
*
* y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
* t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
*
* and so on; and the key schedule preparation would have to
* provide each 6-bit chunk separately.
*
* Really we'd like to XOR in the key schedule element before
* looking up bit strings in R. This we can't do, naively, because
* the 6-bit strings we want overlap. But look at the strings:
*
* 3322222222221111111111
* bit 10987654321098765432109876543210
*
* box0 XXXXX X
* box1 XXXXXX
* box2 XXXXXX
* box3 XXXXXX
* box4 XXXXXX
* box5 XXXXXX
* box6 XXXXXX
* box7 X XXXXX
*
* The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
* overlap with each other. Neither do the ones for boxes 1, 3, 5
* and 7. So we could provide the key schedule in the form of two
* words that we can separately XOR into R, and then every S-box
* index is available as a (cyclically) contiguous 6-bit substring
* of one or the other of the results.
*
* The comments in Eric Young's libdes implementation point out
* that two of these bit strings require a rotation (rather than a
* simple shift) to extract. It's unavoidable that at least _one_
* must do; but we can actually run the whole inner algorithm (all
* 16 rounds) rotated one bit to the left, so that what the `real'
* DES description sees as L=0x80000001 we see as L=0x00000003.
* This requires rotating all our SP-box entries one bit to the
* left, and rotating each word of the key schedule elements one to
* the left, and rotating L and R one bit left just after IP and
* one bit right again just before FP. And in each round we convert
* a rotate into a shift, so we've saved a few per cent.
*
* That's about it for the inner loop; the SP-box tables as listed
* below are what I've described here (the original S value,
* shifted to its final place in the input to P, run through P, and
* then rotated one bit left). All that remains is to optimise the
* initial permutation IP.
*
* IP is not an arbitrary permutation. It has the nice property
* that if you take any bit number, write it in binary (6 bits),
* permute those 6 bits and invert some of them, you get the final
* position of that bit. Specifically, the bit whose initial
* position is given (in binary) as fedcba ends up in position
* AcbFED (where a capital letter denotes the inverse of a bit).
*
* We have the 64-bit data in two 32-bit words L and R, where bits
* in L are those with f=1 and bits in R are those with f=0. We
* note that we can do a simple transformation: suppose we exchange
* the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
* the bit fedcba to be in position cedfba - we've `swapped' bits c
* and f in the position of each bit!
*
* Better still, this transformation is easy. In the example above,
* bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
* are 0xF0F0F0F0. So we can do
*
* difference = ((R >> 4) ^ L) & 0x0F0F0F0F
* R ^= (difference << 4)
* L ^= difference
*
* to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
* Also, we can invert the bit at the top just by exchanging L and
* R. So in a few swaps and a few of these bit operations we can
* do:
*
* Initially the position of bit fedcba is fedcba
* Swap L with R to make it Fedcba
* Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
* Perform bitswap(16,0x0000FFFF) to make it ecdFba
* Swap L with R to make it EcdFba
* Perform bitswap( 2,0x33333333) to make it bcdFEa
* Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
* Swap L with R to make it DcbFEa
* Perform bitswap( 1,0x55555555) to make it acbFED
* Swap L with R to make it AcbFED
*
* (In the actual code the four swaps are implicit: R and L are
* simply used the other way round in the first, second and last
* bitswap operations.)
*
* The final permutation is just the inverse of IP, so it can be
* performed by a similar set of operations.
*/
typedef struct {
word32 k0246[16], k1357[16];
word32 iv0, iv1;
} DESContext;
#define rotl(x, c) ( (x << c) | (x >> (32-c)) )
#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
static word32 bitsel(word32 * input, const int *bitnums, int size)
{
word32 ret = 0;
while (size--) {
int bitpos = *bitnums++;
ret <<= 1;
if (bitpos >= 0)
ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
}
return ret;
}
static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
{
static const int PC1_Cbits[] = {
7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
};
static const int PC1_Dbits[] = {
1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
};
/*
* The bit numbers in the two lists below don't correspond to
* the ones in the above description of PC2, because in the
* above description C and D are concatenated so `bit 28' means
* bit 0 of C. In this implementation we're using the standard
* `bitsel' function above and C is in the second word, so bit
* 0 of C is addressed by writing `32' here.
*/
static const int PC2_0246[] = {
49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
};
static const int PC2_1357[] = {
-1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
-1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
};
static const int leftshifts[] =
{ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
word32 C, D;
word32 buf[2];
int i;
buf[0] = key_lsw;
buf[1] = key_msw;
C = bitsel(buf, PC1_Cbits, 28);
D = bitsel(buf, PC1_Dbits, 28);
for (i = 0; i < 16; i++) {
C = rotl28(C, leftshifts[i]);
D = rotl28(D, leftshifts[i]);
buf[0] = D;
buf[1] = C;
sched->k0246[i] = bitsel(buf, PC2_0246, 32);
sched->k1357[i] = bitsel(buf, PC2_1357, 32);
}
sched->iv0 = sched->iv1 = 0;
}
static const word32 SPboxes[8][64] = {
{0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004L},
{0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000L},
{0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200L},
{0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080L},
{0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100L},
{0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010L},
{0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002L},
{0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000L}
};
#define f(R, K0246, K1357) (\
s0246 = R ^ K0246, \
s1357 = R ^ K1357, \
s0246 = rotl(s0246, 28), \
SPboxes[0] [(s0246 >> 24) & 0x3F] | \
SPboxes[1] [(s1357 >> 24) & 0x3F] | \
SPboxes[2] [(s0246 >> 16) & 0x3F] | \
SPboxes[3] [(s1357 >> 16) & 0x3F] | \
SPboxes[4] [(s0246 >> 8) & 0x3F] | \
SPboxes[5] [(s1357 >> 8) & 0x3F] | \
SPboxes[6] [(s0246 ) & 0x3F] | \
SPboxes[7] [(s1357 ) & 0x3F])
#define bitswap(L, R, n, mask) (\
swap = mask & ( (R >> n) ^ L ), \
R ^= swap << n, \
L ^= swap)
/* Initial permutation */
#define IP(L, R) (\
bitswap(R, L, 4, 0x0F0F0F0F), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(R, L, 1, 0x55555555))
/* Final permutation */
#define FP(L, R) (\
bitswap(R, L, 1, 0x55555555), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(R, L, 4, 0x0F0F0F0F))
static void des_encipher(word32 * output, word32 L, word32 R,
DESContext * sched)
{
word32 swap, s0246, s1357;
IP(L, R);
L = rotl(L, 1);
R = rotl(R, 1);
L ^= f(R, sched->k0246[0], sched->k1357[0]);
R ^= f(L, sched->k0246[1], sched->k1357[1]);
L ^= f(R, sched->k0246[2], sched->k1357[2]);
R ^= f(L, sched->k0246[3], sched->k1357[3]);
L ^= f(R, sched->k0246[4], sched->k1357[4]);
R ^= f(L, sched->k0246[5], sched->k1357[5]);
L ^= f(R, sched->k0246[6], sched->k1357[6]);
R ^= f(L, sched->k0246[7], sched->k1357[7]);
L ^= f(R, sched->k0246[8], sched->k1357[8]);
R ^= f(L, sched->k0246[9], sched->k1357[9]);
L ^= f(R, sched->k0246[10], sched->k1357[10]);
R ^= f(L, sched->k0246[11], sched->k1357[11]);
L ^= f(R, sched->k0246[12], sched->k1357[12]);
R ^= f(L, sched->k0246[13], sched->k1357[13]);
L ^= f(R, sched->k0246[14], sched->k1357[14]);
R ^= f(L, sched->k0246[15], sched->k1357[15]);
L = rotl(L, 31);
R = rotl(R, 31);
swap = L;
L = R;
R = swap;
FP(L, R);
output[0] = L;
output[1] = R;
}
static void des_decipher(word32 * output, word32 L, word32 R,
DESContext * sched)
{
word32 swap, s0246, s1357;
IP(L, R);
L = rotl(L, 1);
R = rotl(R, 1);
L ^= f(R, sched->k0246[15], sched->k1357[15]);
R ^= f(L, sched->k0246[14], sched->k1357[14]);
L ^= f(R, sched->k0246[13], sched->k1357[13]);
R ^= f(L, sched->k0246[12], sched->k1357[12]);
L ^= f(R, sched->k0246[11], sched->k1357[11]);
R ^= f(L, sched->k0246[10], sched->k1357[10]);
L ^= f(R, sched->k0246[9], sched->k1357[9]);
R ^= f(L, sched->k0246[8], sched->k1357[8]);
L ^= f(R, sched->k0246[7], sched->k1357[7]);
R ^= f(L, sched->k0246[6], sched->k1357[6]);
L ^= f(R, sched->k0246[5], sched->k1357[5]);
R ^= f(L, sched->k0246[4], sched->k1357[4]);
L ^= f(R, sched->k0246[3], sched->k1357[3]);
R ^= f(L, sched->k0246[2], sched->k1357[2]);
L ^= f(R, sched->k0246[1], sched->k1357[1]);
R ^= f(L, sched->k0246[0], sched->k1357[0]);
L = rotl(L, 31);
R = rotl(R, 31);
swap = L;
L = R;
R = swap;
FP(L, R);
output[0] = L;
output[1] = R;
}
static void des_cbc_encrypt(unsigned char *blk,
unsigned int len, DESContext * sched)
{
word32 out[2], iv0, iv1;
unsigned int i;
assert((len & 7) == 0);
iv0 = sched->iv0;
iv1 = sched->iv1;
for (i = 0; i < len; i += 8) {
iv0 ^= GET_32BIT_MSB_FIRST(blk);
iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
des_encipher(out, iv0, iv1, sched);
iv0 = out[0];
iv1 = out[1];
PUT_32BIT_MSB_FIRST(blk, iv0);
PUT_32BIT_MSB_FIRST(blk + 4, iv1);
blk += 8;
}
sched->iv0 = iv0;
sched->iv1 = iv1;
}
static void des_cbc_decrypt(unsigned char *blk,
unsigned int len, DESContext * sched)
{
word32 out[2], iv0, iv1, xL, xR;
unsigned int i;
assert((len & 7) == 0);
iv0 = sched->iv0;
iv1 = sched->iv1;
for (i = 0; i < len; i += 8) {
xL = GET_32BIT_MSB_FIRST(blk);
xR = GET_32BIT_MSB_FIRST(blk + 4);
des_decipher(out, xL, xR, sched);
iv0 ^= out[0];
iv1 ^= out[1];
PUT_32BIT_MSB_FIRST(blk, iv0);
PUT_32BIT_MSB_FIRST(blk + 4, iv1);
blk += 8;
iv0 = xL;
iv1 = xR;
}
sched->iv0 = iv0;
sched->iv1 = iv1;
}
static void des_3cbc_encrypt(unsigned char *blk,
unsigned int len, DESContext * scheds)
{
des_cbc_encrypt(blk, len, &scheds[0]);
des_cbc_decrypt(blk, len, &scheds[1]);
des_cbc_encrypt(blk, len, &scheds[2]);
}
static void des_cbc3_encrypt(unsigned char *blk,
unsigned int len, DESContext * scheds)
{
word32 out[2], iv0, iv1;
unsigned int i;
assert((len & 7) == 0);
iv0 = scheds->iv0;
iv1 = scheds->iv1;
for (i = 0; i < len; i += 8) {
iv0 ^= GET_32BIT_MSB_FIRST(blk);
iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
des_encipher(out, iv0, iv1, &scheds[0]);
des_decipher(out, out[0], out[1], &scheds[1]);
des_encipher(out, out[0], out[1], &scheds[2]);
iv0 = out[0];
iv1 = out[1];
PUT_32BIT_MSB_FIRST(blk, iv0);
PUT_32BIT_MSB_FIRST(blk + 4, iv1);
blk += 8;
}
scheds->iv0 = iv0;
scheds->iv1 = iv1;
}
static void des_3cbc_decrypt(unsigned char *blk,
unsigned int len, DESContext * scheds)
{
des_cbc_decrypt(blk, len, &scheds[2]);
des_cbc_encrypt(blk, len, &scheds[1]);
des_cbc_decrypt(blk, len, &scheds[0]);
}
static void des_cbc3_decrypt(unsigned char *blk,
unsigned int len, DESContext * scheds)
{
word32 out[2], iv0, iv1, xL, xR;
unsigned int i;
assert((len & 7) == 0);
iv0 = scheds->iv0;
iv1 = scheds->iv1;
for (i = 0; i < len; i += 8) {
xL = GET_32BIT_MSB_FIRST(blk);
xR = GET_32BIT_MSB_FIRST(blk + 4);
des_decipher(out, xL, xR, &scheds[2]);
des_encipher(out, out[0], out[1], &scheds[1]);
des_decipher(out, out[0], out[1], &scheds[0]);
iv0 ^= out[0];
iv1 ^= out[1];
PUT_32BIT_MSB_FIRST(blk, iv0);
PUT_32BIT_MSB_FIRST(blk + 4, iv1);
blk += 8;
iv0 = xL;
iv1 = xR;
}
scheds->iv0 = iv0;
scheds->iv1 = iv1;
}
static void des_sdctr3(unsigned char *blk,
unsigned int len, DESContext * scheds)
{
word32 b[2], iv0, iv1, tmp;
unsigned int i;
assert((len & 7) == 0);
iv0 = scheds->iv0;
iv1 = scheds->iv1;
for (i = 0; i < len; i += 8) {
des_encipher(b, iv0, iv1, &scheds[0]);
des_decipher(b, b[0], b[1], &scheds[1]);
des_encipher(b, b[0], b[1], &scheds[2]);
tmp = GET_32BIT_MSB_FIRST(blk);
PUT_32BIT_MSB_FIRST(blk, tmp ^ b[0]);
blk += 4;
tmp = GET_32BIT_MSB_FIRST(blk);
PUT_32BIT_MSB_FIRST(blk, tmp ^ b[1]);
blk += 4;
if ((iv1 = (iv1 + 1) & 0xffffffff) == 0)
iv0 = (iv0 + 1) & 0xffffffff;
}
scheds->iv0 = iv0;
scheds->iv1 = iv1;
}
static void *des3_make_context(void)
{
return snewn(3, DESContext);
}
static void *des3_ssh1_make_context(void)
{
/* Need 3 keys for each direction, in SSH-1 */
return snewn(6, DESContext);
}
static void *des_make_context(void)
{
return snew(DESContext);
}
static void *des_ssh1_make_context(void)
{
/* Need one key for each direction, in SSH-1 */
return snewn(2, DESContext);
}
static void des3_free_context(void *handle) /* used for both 3DES and DES */
{
sfree(handle);
}
static void des3_key(void *handle, unsigned char *key)
{
DESContext *keys = (DESContext *) handle;
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
GET_32BIT_MSB_FIRST(key + 12), &keys[1]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
GET_32BIT_MSB_FIRST(key + 20), &keys[2]);
}
static void des3_iv(void *handle, unsigned char *key)
{
DESContext *keys = (DESContext *) handle;
keys[0].iv0 = GET_32BIT_MSB_FIRST(key);
keys[0].iv1 = GET_32BIT_MSB_FIRST(key + 4);
}
static void des_key(void *handle, unsigned char *key)
{
DESContext *keys = (DESContext *) handle;
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
}
static void des3_sesskey(void *handle, unsigned char *key)
{
DESContext *keys = (DESContext *) handle;
des3_key(keys, key);
des3_key(keys+3, key);
}
static void des3_encrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_3cbc_encrypt(blk, len, keys);
}
static void des3_decrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_3cbc_decrypt(blk, len, keys+3);
}
static void des3_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_cbc3_encrypt(blk, len, keys);
}
static void des3_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_cbc3_decrypt(blk, len, keys);
}
static void des3_ssh2_sdctr(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_sdctr3(blk, len, keys);
}
static void des_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_cbc_encrypt(blk, len, keys);
}
static void des_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
{
DESContext *keys = (DESContext *) handle;
des_cbc_decrypt(blk, len, keys);
}
void des3_decrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
{
DESContext ourkeys[3];
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
des_3cbc_decrypt(blk, len, ourkeys);
smemclr(ourkeys, sizeof(ourkeys));
}
void des3_encrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
{
DESContext ourkeys[3];
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
des_3cbc_encrypt(blk, len, ourkeys);
smemclr(ourkeys, sizeof(ourkeys));
}
void des3_decrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
unsigned char *blk, int len)
{
DESContext ourkeys[3];
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
des_cbc3_decrypt(blk, len, ourkeys);
smemclr(ourkeys, sizeof(ourkeys));
}
void des3_encrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
unsigned char *blk, int len)
{
DESContext ourkeys[3];
des_key_setup(GET_32BIT_MSB_FIRST(key),
GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
des_cbc3_encrypt(blk, len, ourkeys);
smemclr(ourkeys, sizeof(ourkeys));
}
static void des_keysetup_xdmauth(const unsigned char *keydata, DESContext *dc)
{
unsigned char key[8];
int i, nbits, j;
unsigned int bits;
bits = 0;
nbits = 0;
j = 0;
for (i = 0; i < 8; i++) {
if (nbits < 7) {
bits = (bits << 8) | keydata[j];
nbits += 8;
j++;
}
key[i] = (bits >> (nbits - 7)) << 1;
bits &= ~(0x7F << (nbits - 7));
nbits -= 7;
}
des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);
}
void des_encrypt_xdmauth(const unsigned char *keydata,
unsigned char *blk, int len)
{
DESContext dc;
des_keysetup_xdmauth(keydata, &dc);
des_cbc_encrypt(blk, len, &dc);
}
void des_decrypt_xdmauth(const unsigned char *keydata,
unsigned char *blk, int len)
{
DESContext dc;
des_keysetup_xdmauth(keydata, &dc);
des_cbc_decrypt(blk, len, &dc);
}
static const struct ssh2_cipher ssh_3des_ssh2 = {
des3_make_context, des3_free_context, des3_iv, des3_key,
des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk, NULL, NULL,
"3des-cbc",
8, 168, 24, SSH_CIPHER_IS_CBC, "triple-DES CBC",
NULL
};
static const struct ssh2_cipher ssh_3des_ssh2_ctr = {
des3_make_context, des3_free_context, des3_iv, des3_key,
des3_ssh2_sdctr, des3_ssh2_sdctr, NULL, NULL,
"3des-ctr",
8, 168, 24, 0, "triple-DES SDCTR",
NULL
};
/*
* Single DES in SSH-2. "des-cbc" is marked as HISTORIC in
* RFC 4250, referring to
* FIPS-46-3. ("Single DES (i.e., DES) will be permitted
* for legacy systems only.") , but ssh.com support it and
* apparently aren't the only people to do so, so we sigh
* and implement it anyway.
*/
static const struct ssh2_cipher ssh_des_ssh2 = {
des_make_context, des3_free_context, des3_iv, des_key,
des_ssh2_encrypt_blk, des_ssh2_decrypt_blk, NULL, NULL,
"des-cbc",
8, 56, 8, SSH_CIPHER_IS_CBC, "single-DES CBC",
NULL
};
static const struct ssh2_cipher ssh_des_sshcom_ssh2 = {
des_make_context, des3_free_context, des3_iv, des_key,
des_ssh2_encrypt_blk, des_ssh2_decrypt_blk, NULL, NULL,
8, 56, 8, SSH_CIPHER_IS_CBC, "single-DES CBC",
NULL
};
static const struct ssh2_cipher *const des3_list[] = {
&ssh_3des_ssh2_ctr,
&ssh_3des_ssh2
};
const struct ssh2_ciphers ssh2_3des = {
sizeof(des3_list) / sizeof(*des3_list),
des3_list
};
static const struct ssh2_cipher *const des_list[] = {
&ssh_des_ssh2,
&ssh_des_sshcom_ssh2