forked from soobinseo/Attentive-Neural-Process
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
43 lines (36 loc) · 1.69 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch as t
import torchvision.transforms
import numpy as np
def collate_fn(batch):
# Puts each data field into a tensor with outer dimension batch size
assert isinstance(batch[0], tuple)
trans = torchvision.transforms.ToTensor()
batch_size = len(batch)
max_num_context = 784
num_context = np.random.randint(10,784) # extract random number of contexts
num_target = np.random.randint(0, max_num_context - num_context)
num_total_points = num_context + num_target # this num should be # of target points
# num_total_points = max_num_context
context_x, context_y, target_x, target_y = list(), list(), list(), list()
for d, _ in batch:
d = trans(d)
total_idx = np.random.choice(range(784), num_total_points, replace=False)
total_idx = list(map(lambda x: (x//28, x%28), total_idx))
c_idx = total_idx[:num_context]
c_x, c_y, total_x, total_y = list(), list(), list(), list()
for idx in c_idx:
c_y.append(d[:, idx[0], idx[1]])
c_x.append((idx[0] / 27., idx[1] / 27.))
for idx in total_idx:
total_y.append(d[:, idx[0], idx[1]])
total_x.append((idx[0] / 27., idx[1] / 27.))
c_x, c_y, total_x, total_y = list(map(lambda x: t.FloatTensor(x), (c_x, c_y, total_x, total_y)))
context_x.append(c_x)
context_y.append(c_y)
target_x.append(total_x)
target_y.append(total_y)
context_x = t.stack(context_x, dim=0)
context_y = t.stack(context_y, dim=0).unsqueeze(-1)
target_x = t.stack(target_x, dim=0)
target_y = t.stack(target_y, dim=0).unsqueeze(-1)
return context_x, context_y, target_x, target_y