-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain_inference.py
60 lines (52 loc) · 1.88 KB
/
main_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import os.path as osp
import yaml
import argparse
import torch
import numpy as np
from glob import glob
from face_alignment import align
from opensphere.model import Model
def parse_args():
parser = argparse.ArgumentParser(
description='A PyTorch project for face recognition.')
parser.add_argument('--image_dir', default='./face_alignment/test_images/',
help='path to the image directory')
parser.add_argument('--proj_dir',
help='the directory to load model')
args = parser.parse_args()
return args
if __name__ == '__main__':
# get arguments
args = parse_args()
# get config of the trained model
cfg_path = osp.join(args.proj_dir, 'config.yml')
with open(cfg_path, 'r') as f:
config = yaml.load(f, yaml.SafeLoader)
# get model
model = Model(config['model'])
last_save = config['trainer']['save_steps'][-1]
model_path = osp.join(args.proj_dir, 'checkpoint', f'model_{last_save}.pth')
model_dict = torch.load(model_path)
model.load_state_dict(model_dict)
model.eval_mode()
# inference
image_paths = sorted(glob(osp.join(args.image_dir, '*.*')))
features = []
for image_path in image_paths:
# get image
aligned_image = align.get_aligned_face(image_path)
if aligned_image is None:
continue
aligned_image = np.array(aligned_image, dtype=np.float32)
aligned_image = (aligned_image - 127.5) / 127.5
aligned_image = torch.tensor(aligned_image.transpose(2, 0, 1)).unsqueeze(0)
# get feature
feat = model.get_feature(aligned_image.cuda())
feat = model.head.f_wrapping(feat)
fused_feat = model.head.f_fusing(feat)
features.append(fused_feat)
features = torch.cat(features, dim=0)
# calculate score
score = model.head.f_scoring(features, features, all_pairs=True)
print(score)