forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpattern.cpp
1292 lines (1108 loc) · 62.1 KB
/
pattern.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) 2018-2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <gtest/gtest.h>
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>
#include "common_test_utils/matcher.hpp"
#include "common_test_utils/ov_test_utils.hpp"
#include "common_test_utils/test_tools.hpp"
#include "openvino/core/except.hpp"
#include "openvino/op/abs.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/broadcast.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/cos.hpp"
#include "openvino/op/cosh.hpp"
#include "openvino/op/divide.hpp"
#include "openvino/op/equal.hpp"
#include "openvino/op/exp.hpp"
#include "openvino/op/greater.hpp"
#include "openvino/op/matmul.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/non_max_suppression.hpp"
#include "openvino/op/parameter.hpp"
#include "openvino/op/reduce_sum.hpp"
#include "openvino/op/relu.hpp"
#include "openvino/op/sigmoid.hpp"
#include "openvino/op/strided_slice.hpp"
#include "openvino/op/subtract.hpp"
#include "openvino/op/transpose.hpp"
#include "openvino/op/util/op_types.hpp"
#include "openvino/pass/graph_rewrite.hpp"
#include "openvino/pass/manager.hpp"
#include "openvino/pass/pattern/matcher.hpp"
#include "openvino/pass/pattern/op/label.hpp"
#include "openvino/pass/pattern/op/optional.hpp"
#include "openvino/pass/pattern/op/or.hpp"
#include "openvino/pass/pattern/op/true.hpp"
#include "openvino/pass/pattern/op/wrap_type.hpp"
#include "transformations/utils/utils.hpp"
using namespace ov;
using namespace ov::pass;
using namespace std;
static std::shared_ptr<Node> construct_constant_node(int n) {
return ov::op::v0::Constant::create(element::i32, Shape{}, {n});
}
static std::shared_ptr<pass::pattern::op::Label> construct_variance_graph() {
// construct varaiance
auto N = ov::op::v0::Constant::create(element::f32, Shape{3}, {2, 2, 2});
auto input = std::make_shared<pass::pattern::op::Label>(element::f32, Shape{2, 3});
auto input_sq = std::make_shared<op::v1::Multiply>(input, input);
auto sum_input = std::make_shared<op::v1::ReduceSum>(input, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto square_sumed_input = std::make_shared<op::v1::Multiply>(sum_input, sum_input);
auto sum_squared_input =
std::make_shared<op::v1::ReduceSum>(input_sq, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto avg_input_sum_sq = std::make_shared<op::v1::Divide>(square_sumed_input, N);
auto xmu = std::make_shared<op::v1::Subtract>(sum_squared_input, avg_input_sum_sq);
auto variance = std::make_shared<op::v1::Divide>(xmu, N);
auto variance_label = std::make_shared<pass::pattern::op::Label>(variance, nullptr, NodeVector{variance});
return variance_label;
}
static std::shared_ptr<pattern::op::Label> construct_mean_graph() {
// construct mean;
auto input = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 3});
auto N = ov::op::v0::Constant::create(element::f32, Shape{3}, {2, 2, 2});
auto sum_input1 = std::make_shared<op::v1::ReduceSum>(input, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto mean = std::make_shared<op::v1::Divide>(sum_input1, N);
auto mean_label = std::make_shared<pattern::op::Label>(mean, nullptr, NodeVector{mean});
return mean_label;
}
class TestGraphRewrite : public ov::pass::GraphRewrite {
public:
OPENVINO_GRAPH_REWRITE_RTTI("TestGraphRewrite");
void construct_multiply_by_one() {
// pattern #1 : a * 1 = a
auto iconst1 = construct_constant_node(1);
auto pattern = std::make_shared<pattern::op::Label>(iconst1);
auto callback = [pattern](pattern::Matcher& m) {
OPENVINO_DEBUG("In a callback for construct_multiply_by_one against ", m.get_match_root()->get_name());
OPENVINO_ASSERT(m.get_match_root()->input_values().size() == 2);
auto pattern_map = m.get_pattern_map();
size_t const_node_index = m.get_match_root()->input_value(0).get_node_shared_ptr() == pattern_map[pattern];
auto const_node = ov::as_type_ptr<ov::op::v0::Constant>(
m.get_match_root()->input_value(const_node_index).get_node_shared_ptr());
auto second_node = m.get_match_root()->input_value(const_node_index).get_node_shared_ptr();
OPENVINO_DEBUG("second_node = ",
second_node->get_name(),
" , pattern = ",
pattern_map[pattern]->get_name());
if (pattern_map[pattern]->get_element_type() != const_node->get_element_type() ||
pattern_map[pattern]->get_shape() != const_node->get_shape()) {
OPENVINO_DEBUG("Operands' types and/or shape don't match");
return false;
}
auto const_values = const_node->get_vector<int32_t>();
bool all_ones = std::all_of(begin(const_values), end(const_values), [](int e) {
return e == 1;
});
if (!all_ones) {
OPENVINO_DEBUG("Constant vector's values aren't equal to 1");
return false;
}
ov::replace_node(m.get_match_root(), pattern_map[pattern]);
return true;
};
auto m = make_shared<TestMatcher>(make_shared<op::v1::Multiply>(pattern, iconst1));
auto match_pass = std::make_shared<ov::pass::MatcherPass>(
m->get_name(),
m,
[m, callback](const std::shared_ptr<Node>& node) -> bool {
OPENVINO_DEBUG("Running matcher ", m->get_name(), " on ", node);
if (std::dynamic_pointer_cast<ov::pass::pattern::Matcher>(m)->match(node->output(0))) {
OPENVINO_DEBUG("Matcher ", m->get_name(), " matched ", node);
bool status = callback(*m.get());
// explicitly clear Matcher state because it holds pointers to matched nodes
m->clear_state();
return status;
}
m->clear_state();
return false;
},
ov::pass::PassProperty::REQUIRE_STATIC_SHAPE);
this->add_matcher(match_pass);
}
void construct_add_zero() {
// pattern #2 : a + 0 = a
auto iconst0 = construct_constant_node(0);
auto pattern = std::make_shared<pattern::op::Label>(iconst0);
auto callback = [pattern](pattern::Matcher& m) {
OPENVINO_DEBUG("In a callback for construct_add_zero against ", m.get_match_root()->get_name());
OPENVINO_ASSERT(m.get_match_root()->input_values().size() == 2);
auto pattern_map = m.get_pattern_map();
size_t const_node_index = m.get_match_root()->input_value(0).get_node_shared_ptr() == pattern_map[pattern];
auto const_node = ov::as_type_ptr<ov::op::v0::Constant>(
m.get_match_root()->input_value(const_node_index).get_node_shared_ptr());
auto second_node = m.get_match_root()->input_value(const_node_index).get_node_shared_ptr();
OPENVINO_DEBUG("second_node = ",
second_node->get_name(),
" , pattern = ",
pattern_map[pattern]->get_name());
if (pattern_map[pattern]->get_element_type() != const_node->get_element_type() ||
pattern_map[pattern]->get_shape() != const_node->get_shape()) {
OPENVINO_DEBUG("Operands' types and/or shape don't match");
return false;
}
auto const_values = const_node->get_vector<int>();
bool all_zeros = std::all_of(begin(const_values), end(const_values), [](int e) {
return e == 0;
});
if (!all_zeros) {
OPENVINO_DEBUG("Constant vector's values aren't equal to 0");
return false;
}
ov::replace_node(m.get_match_root(), pattern_map[pattern]);
return true;
};
auto add = make_shared<op::v1::Add>(pattern, iconst0);
auto m = make_shared<TestMatcher>(add);
auto match_pass = std::make_shared<ov::pass::MatcherPass>(
m->get_name(),
m,
[m, callback](const std::shared_ptr<Node>& node) -> bool {
OPENVINO_DEBUG("Running matcher ", m->get_name(), " on ", node);
if (std::dynamic_pointer_cast<ov::pass::pattern::Matcher>(m)->match(node->output(0))) {
OPENVINO_DEBUG("Matcher ", m->get_name(), " matched ", node);
bool status = callback(*m.get());
// explicitly clear Matcher state because it holds pointers to matched nodes
m->clear_state();
return status;
}
m->clear_state();
return false;
},
ov::pass::PassProperty::REQUIRE_STATIC_SHAPE);
this->add_matcher(match_pass);
}
TestGraphRewrite() : GraphRewrite() {
construct_multiply_by_one();
construct_add_zero();
}
};
static void run_passes(pass::Manager& pass_manager,
shared_ptr<Node> graph,
std::vector<shared_ptr<op::v0::Parameter>> parms) {
auto func = make_shared<Model>(graph, ParameterVector{parms});
pass_manager.run_passes(func);
}
TEST(pattern, graph_rewrite) {
Shape shape{};
pass::Manager pass_manager;
pass_manager.register_pass<TestGraphRewrite>();
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto c = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst0 = construct_constant_node(0);
auto graph_a = make_shared<op::v1::Add>(a, iconst0);
auto graph_b = make_shared<op::v1::Add>(b, iconst0);
auto f = std::make_shared<Model>(ov::NodeVector{a, b, graph_a, c, graph_b}, ParameterVector{a, b, c});
pass_manager.run_passes(f);
ASSERT_TRUE(graph_a->get_output_target_inputs(0).empty());
ASSERT_TRUE(graph_b->get_output_target_inputs(0).empty());
auto expected = ov::NodeVector{a, b, a, c, b};
ASSERT_TRUE(count_ops_of_type<op::v1::Add>(f) == 0);
}
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst0 = construct_constant_node(0);
auto sum = make_shared<op::v1::Add>(a, iconst0);
auto graph = make_shared<op::v1::Add>(b, sum);
run_passes(pass_manager, graph, {a, b});
ASSERT_EQ(graph->input_value(1).get_node_shared_ptr(), a);
ASSERT_EQ(graph->input_value(1), a->output(0)); // graph's input points to a's output
ASSERT_TRUE(sum->output(0).get_target_inputs().empty()); // graph's input is removed from sum's target inptus
ASSERT_TRUE(a->get_output_target_inputs(0).count(graph->input(1))); // a's output feeds into graph's input
}
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst1 = construct_constant_node(1);
auto mul = make_shared<op::v1::Multiply>(a, iconst1);
auto graph = make_shared<op::v1::Add>(b, mul);
run_passes(pass_manager, graph, {a, b});
ASSERT_EQ(graph->input_value(1).get_node_shared_ptr(), a);
ASSERT_EQ(graph->input_value(1), a->output(0)); // graph's input points to a's output
ASSERT_TRUE(mul->output(0).get_target_inputs().empty()); // graph's input is removed from sum's target inputs
ASSERT_TRUE(a->get_output_target_inputs(0).count(graph->input(1))); // a's output feeds into graph's input
}
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst1 = construct_constant_node(1);
auto multiply = make_shared<op::v1::Multiply>(make_shared<op::v1::Multiply>(a, iconst1), iconst1);
multiply = make_shared<op::v1::Multiply>(make_shared<op::v1::Multiply>(multiply, iconst1), iconst1);
auto graph = make_shared<op::v1::Add>(multiply, b);
run_passes(pass_manager, graph, {a, b});
ASSERT_EQ(graph->input_value(0).get_node_shared_ptr(), a);
ASSERT_EQ(graph->input_value(0), a->output(0)); // graph's input points to a's output
ASSERT_TRUE(a->get_output_target_inputs(0).count(graph->input(0))); // a's output feeds into graph's input
}
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst0 = construct_constant_node(0);
auto iconst1 = construct_constant_node(1);
auto mul = make_shared<op::v1::Multiply>(make_shared<op::v1::Add>(a, iconst0), iconst1);
auto graph = make_shared<op::v1::Add>(b, make_shared<op::v1::Add>(iconst0, mul));
run_passes(pass_manager, graph, {a, b});
ASSERT_EQ(graph->input_value(1).get_node_shared_ptr(), a);
ASSERT_EQ(graph->input_value(1), a->output(0)); // graph's input points to a's output
ASSERT_TRUE(a->get_output_target_inputs(0).count(graph->input(1))); // a's output feeds into graph's input
}
{
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto iconst1 = construct_constant_node(1);
auto mul = make_shared<op::v1::Multiply>(iconst1, make_shared<op::v1::Multiply>(iconst1, a));
mul = make_shared<op::v1::Multiply>(iconst1, make_shared<op::v1::Multiply>(iconst1, mul));
auto graph = make_shared<op::v1::Add>(b, mul);
run_passes(pass_manager, graph, {a, b});
ASSERT_EQ(graph->input_value(1).get_node_shared_ptr(), a);
ASSERT_EQ(graph->input_value(1), a->output(0)); // graph's input points to a's output
ASSERT_TRUE(a->get_output_target_inputs(0).count(graph->input(1))); // a's output feeds into graph's input
}
}
TEST(pattern, matcher) {
Shape shape{};
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
TestMatcher n;
ASSERT_TRUE(n.match(a, a));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a}));
auto abs = make_shared<op::v0::Abs>(a);
auto false_pred = [](std::shared_ptr<Node> /* no */) {
return false;
};
auto pattern = std::make_shared<pattern::op::Label>(a);
ASSERT_TRUE(n.match(pattern, a));
ASSERT_EQ(n.get_pattern_map()[pattern], a);
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a}));
auto pattern_false = std::make_shared<pattern::op::Label>(a, false_pred);
ASSERT_FALSE(n.match(pattern_false, a));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{}));
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto is_bea = [](std::shared_ptr<Node> node) -> bool {
return op::util::is_binary_elementwise_arithmetic(node);
};
auto bea = std::make_shared<pattern::op::Any>(a, is_bea, NodeVector{a, b});
auto add_ab = std::make_shared<op::v1::Add>(a, b);
ASSERT_TRUE(n.match(bea, add_ab));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add_ab, a, b}));
ASSERT_TRUE(n.match(bea, std::make_shared<op::v1::Add>(b, a)));
auto bea_false = std::make_shared<pattern::op::Any>(a, false_pred, NodeVector{a, b});
ASSERT_FALSE(n.match(bea_false, std::make_shared<op::v1::Add>(a, b)));
auto add_abs_b = std::make_shared<op::v1::Add>(abs, b);
auto bea_any_of = std::make_shared<pattern::op::AnyOf>(a, is_bea, NodeVector{abs});
ASSERT_TRUE(n.match(bea_any_of, add_abs_b));
auto add_b_abs = std::make_shared<op::v1::Add>(b, abs);
ASSERT_TRUE(n.match(bea_any_of, add_b_abs));
auto bea_any_of_label = std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{bea_any_of});
ASSERT_TRUE(n.match(bea_any_of_label, add_b_abs));
ASSERT_EQ(n.get_pattern_map()[bea_any_of_label], add_b_abs);
auto abs_label = std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{abs});
auto bea_label_any_of = std::make_shared<pattern::op::AnyOf>(a, is_bea, NodeVector{abs_label});
ASSERT_TRUE(n.match(bea_label_any_of, add_b_abs));
ASSERT_EQ(n.get_pattern_map()[abs_label], abs);
auto bea_label = std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{bea});
auto ab = std::make_shared<op::v1::Add>(a, b);
ASSERT_TRUE(n.match(bea_label, ab));
ASSERT_EQ(n.get_pattern_map()[bea_label], ab);
auto d = make_shared<op::v0::Parameter>(element::i32, shape);
ASSERT_FALSE(n.match(d, b));
ASSERT_FALSE(n.match(std::make_shared<op::v1::Add>(abs, b), std::make_shared<op::v1::Add>(b, b)));
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{}));
auto iconst1_0 = construct_constant_node(1);
auto iconst1_1 = construct_constant_node(1);
ASSERT_TRUE(n.match(make_shared<op::v1::Multiply>(pattern, iconst1_0),
make_shared<op::v1::Multiply>(a, iconst1_1))); // different iconst
ASSERT_EQ(n.get_pattern_map()[pattern], a);
auto fconst1_0 = ov::op::v0::Constant::create(element::f32, shape, {1});
auto patternf = std::make_shared<pattern::op::Label>(fconst1_0);
ASSERT_TRUE(n.match(make_shared<op::v1::Multiply>(patternf, fconst1_0),
make_shared<op::v1::Multiply>(a, iconst1_1))); // different iconst
// Subgraph labels
auto add = std::make_shared<op::v1::Add>(a, b);
auto label = std::make_shared<pattern::op::Label>(add, nullptr, NodeVector{add});
ASSERT_TRUE(n.match(label, add));
ASSERT_EQ(n.get_pattern_map()[label], add);
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add, add, a, b}));
ASSERT_FALSE(n.match(label, std::make_shared<op::v1::Subtract>(a, b)));
ASSERT_TRUE(n.match(make_shared<op::v0::Abs>(label), make_shared<op::v0::Abs>(add)));
ASSERT_EQ(n.get_pattern_map()[label], add);
// Correct argument order
ASSERT_FALSE(n.match(make_shared<op::v1::Subtract>(b, a), make_shared<op::v1::Subtract>(a, b)));
auto aab = make_shared<op::v1::Multiply>(a, make_shared<op::v1::Subtract>(a, b));
auto paab = make_shared<op::v1::Multiply>(pattern, make_shared<op::v1::Subtract>(pattern, b));
ASSERT_TRUE(n.match(paab, aab));
auto aba = make_shared<op::v1::Multiply>(a, make_shared<op::v1::Subtract>(b, a));
ASSERT_FALSE(n.match(paab, aba));
auto paba = make_shared<op::v1::Multiply>(pattern, make_shared<op::v1::Subtract>(b, pattern));
ASSERT_FALSE(n.match(paba, aab));
// Correlations
auto label1 = std::make_shared<pattern::op::Label>(a);
auto tmp = std::make_shared<op::v1::Add>(label1, b);
auto label2 = std::make_shared<pattern::op::Label>(tmp, nullptr, NodeVector{tmp});
auto sub_label1 = std::make_shared<op::v1::Subtract>(label1, label2);
auto sub_add = std::make_shared<op::v1::Subtract>(a, add);
ASSERT_TRUE(n.match(sub_label1, sub_add));
ASSERT_EQ(n.get_pattern_map()[label1], a);
ASSERT_EQ(n.get_pattern_map()[label2], add);
ASSERT_EQ(n.get_matched_nodes(), (NodeVector{sub_add, a, add, add, a, b}));
ASSERT_FALSE(n.match(sub_label1, std::make_shared<op::v1::Subtract>(add, a)));
auto add_label1 = std::make_shared<op::v1::Add>(label1, label2);
ASSERT_TRUE(n.match(add_label1, std::make_shared<op::v1::Add>(add, a)));
ASSERT_EQ(n.get_pattern_map()[label1], a);
ASSERT_EQ(n.get_pattern_map()[label2], add);
// Or
ASSERT_TRUE(n.match(std::make_shared<pattern::op::Or>(OutputVector{std::make_shared<op::v1::Add>(a, b),
std::make_shared<op::v1::Subtract>(a, b)}),
std::make_shared<op::v1::Add>(a, b)));
ASSERT_TRUE(n.match(std::make_shared<pattern::op::Or>(OutputVector{std::make_shared<op::v1::Add>(a, b),
std::make_shared<op::v1::Subtract>(a, b)}),
std::make_shared<op::v1::Subtract>(a, b)));
// strict mode
{
TestMatcher sm(Output<Node>{}, "TestMatcher", true);
// exact shape and type
auto scalar_param = make_shared<op::v0::Parameter>(element::i32, Shape{});
auto label_dynamic_shape = make_shared<pattern::op::Label>(element::i32, PartialShape::dynamic());
auto param = make_shared<op::v0::Parameter>(element::f32, Shape{});
ASSERT_TRUE(sm.match(label_dynamic_shape, scalar_param));
// wrong type
auto scalar_param_wrong_type = make_shared<op::v0::Parameter>(element::f32, Shape{});
ASSERT_FALSE(sm.match(label, scalar_param_wrong_type));
// dynamic dimension
auto label_dynamic_dimension =
make_shared<pattern::op::Label>(element::i32, PartialShape{Dimension::dynamic()});
auto vector_param = make_shared<op::v0::Parameter>(element::i32, Shape{10});
ASSERT_TRUE(sm.match(label_dynamic_dimension, vector_param));
// dynamic type
auto label_dynamic_type = make_shared<pattern::op::Label>(element::dynamic, PartialShape{Dimension::dynamic()});
ASSERT_TRUE(sm.match(label_dynamic_type, vector_param));
}
}
// match optional nodes with single input
TEST(pattern, optional_match_node_with_single_input) {
Shape shape{1, 2, 3};
auto model_input_0 = make_shared<op::v0::Parameter>(element::f32, shape);
auto model_exp = make_shared<op::v0::Exp>(model_input_0);
auto model_const_input_0 =
make_shared<op::v0::Constant>(element::f32, shape, std::vector<float>(ov::shape_size(shape), 0.1f));
auto model_const_exp = make_shared<op::v0::Exp>(model_const_input_0);
TestMatcher matcher;
// is_on_const_path
auto param_predicate = [](const Output<Node>& output) {
return !ov::op::util::is_on_constant_path(output);
};
auto pattern_in_0 = ov::pass::pattern::any_input();
auto pattern_exp = ov::pass::pattern::wrap_type<ov::op::v0::Exp>({pattern_in_0});
// without optional op
{
ASSERT_TRUE(matcher.match(pattern_exp, model_exp));
ASSERT_TRUE(matcher.match(pattern_exp, model_const_exp));
}
// with optional: 1 type
{
auto pattern = ov::pass::pattern::optional<op::v0::Abs>(pattern_exp);
ASSERT_TRUE(matcher.match(pattern, model_exp));
ASSERT_TRUE(matcher.match(pattern, model_const_exp));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Abs>(model_exp)));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Abs>(model_const_exp)));
// negative scenario
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Relu>(model_exp)));
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Relu>(model_const_exp)));
}
// with optional: 1 type and predicate
{
auto pattern = ov::pass::pattern::optional<op::v0::Abs>(pattern_exp, param_predicate);
ASSERT_TRUE(matcher.match(pattern, model_exp));
ASSERT_TRUE(matcher.match(pattern, model_const_exp));
ASSERT_TRUE(matcher.match(pattern, model_exp));
ASSERT_TRUE(matcher.match(pattern, model_const_exp));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Abs>(model_exp)));
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Abs>(model_const_exp)));
}
// with 2 types
{
auto pattern = ov::pass::pattern::optional<op::v0::Abs, op::v0::Relu>(pattern_exp);
ASSERT_TRUE(matcher.match(pattern, model_exp));
ASSERT_TRUE(matcher.match(pattern, model_const_exp));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Abs>(model_exp)));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Relu>(model_const_exp)));
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Exp>(model_exp)));
// negative
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Cos>(model_exp)));
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Cosh>(model_const_exp)));
}
// with 2 types and predicate
{
auto pattern = ov::pass::pattern::optional<op::v0::Abs, op::v0::Relu>(pattern_exp, param_predicate);
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Abs>(model_exp)));
// negative
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Relu>(model_const_exp)));
ASSERT_FALSE(matcher.match(pattern, make_shared<op::v0::Cos>(model_exp)));
// true: match exp without optional + exp as an input
ASSERT_TRUE(matcher.match(pattern, make_shared<op::v0::Exp>(model_const_exp)));
}
}
TEST(pattern, or_pattern_points_the_selected_branch) {
using namespace ov::op;
using namespace ov::pass::pattern;
// Graph:
auto model_param = make_shared<v0::Parameter>();
auto model_sigmoid = make_shared<v0::Sigmoid>(model_param);
// Pattern:
auto option_1 = wrap_type<v0::Parameter>();
auto option_2 = wrap_type<v0::Sigmoid>();
auto or_pattern = std::make_shared<pattern::op::Or>(ov::OutputVector{option_1, option_2});
// Test:
TestMatcher matcher;
EXPECT_TRUE(matcher.match(or_pattern, model_sigmoid));
auto pattern_val_mp = matcher.get_pattern_value_map();
EXPECT_EQ(pattern_val_mp.count(or_pattern), 1);
// we expect that Or pattern points to the first node of the selected branch
EXPECT_NE(ov::as_type<v0::Sigmoid>(pattern_val_mp.at(or_pattern).get_node()), nullptr);
}
TEST(pattern, multiple_optionals_in_row) {
using namespace ov::op;
using namespace ov::pass::pattern;
// Graph:
Shape shape{1, 2, 3};
auto model_input_0 = make_shared<v0::Parameter>(element::f32, shape);
auto model_sigmoid = make_shared<v0::Sigmoid>(model_input_0);
// Pattern:
auto in = wrap_type<v0::Parameter>();
auto pattern_convert = pattern::optional<v0::Convert>(in);
auto pattern_relu = pattern::optional<v0::Relu>(pattern_convert);
auto pattern_sigmoid = wrap_type<v0::Sigmoid>({pattern_relu});
// Test:
TestMatcher matcher;
EXPECT_TRUE(matcher.match(pattern_sigmoid, model_sigmoid));
auto pattern_val_mp = matcher.get_pattern_value_map();
EXPECT_EQ(pattern_val_mp.count(in), 1);
EXPECT_NE(ov::as_type<v0::Parameter>(pattern_val_mp.at(in).get_node()), nullptr);
// as Convert and Relu ops are not present in the graph, so we expect the optional nodes
// do not point to the graph nodes, in other words, the optional nodes are not in the pattern map.
EXPECT_EQ(pattern_val_mp.count(pattern_convert), 0);
EXPECT_EQ(pattern_val_mp.count(pattern_relu), 0);
EXPECT_EQ(pattern_val_mp.count(pattern_sigmoid), 1);
EXPECT_NE(ov::as_type<v0::Sigmoid>(pattern_val_mp.at(pattern_sigmoid).get_node()), nullptr);
}
// match optional nodes with multi input where order in not important
TEST(pattern, optional_match_cumulative_node_with_multi_input) {
Shape shape{1, 2, 3};
auto model_input_0 = make_shared<op::v0::Parameter>(element::f32, shape);
auto model_relu = make_shared<op::v0::Relu>(model_input_0);
auto model_input_1 =
make_shared<op::v0::Constant>(element::f32, shape, std::vector<float>(ov::shape_size(shape), .1f));
auto model_add = std::make_shared<op::v1::Add>(model_relu, model_input_1);
auto model_equal = std::make_shared<op::v1::Equal>(model_relu, model_input_1);
auto arithmetic_pattern = [](const ov::Output<ov::Node>& output) {
return ov::op::util::is_binary_elementwise_arithmetic(output.get_node_shared_ptr());
};
auto relu_pattern = [](const ov::Output<ov::Node>& output) {
return output.get_node_shared_ptr()->get_type_info().is_castable(ov::op::v0::Relu::get_type_info_static());
};
TestMatcher matcher;
auto pattern_input_0 = ov::pass::pattern::any_input(relu_pattern);
auto pattern_input_1 = ov::pass::pattern::wrap_type<ov::op::v0::Constant>();
// 1 type, correct in_order, without predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Add>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_add));
ASSERT_FALSE(matcher.match(pattern, model_equal));
auto pattern_negative = ov::pass::pattern::optional<op::v1::Equal>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern_negative, model_add));
}
// 2 type, correct in_order, without predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Add, op::v1::Equal>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_add));
ASSERT_TRUE(matcher.match(pattern, model_equal));
// negative
ASSERT_FALSE(matcher.match(pattern, std::make_shared<op::v1::Subtract>(model_relu, model_input_1)));
}
// 2 type, correct in_order, with predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Add, op::v1::Equal>({pattern_input_0, pattern_input_1},
arithmetic_pattern);
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_add));
ASSERT_FALSE(matcher.match(pattern, model_equal));
}
// 2 type, reverse in_order, without predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Add, op::v1::Equal>({pattern_input_1, pattern_input_0});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_FALSE(matcher.match(pattern, model_relu));
ASSERT_TRUE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_add));
ASSERT_TRUE(matcher.match(pattern, model_equal));
}
// 2 type, reverse in_order, with predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Add, op::v1::Equal>({pattern_input_1, pattern_input_0},
arithmetic_pattern);
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_FALSE(matcher.match(pattern, model_relu));
ASSERT_TRUE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_add));
ASSERT_FALSE(matcher.match(pattern, model_equal));
}
}
// match optional nodes with multi input where order in important
TEST(pattern, optional_match_node_with_multi_input_order_is_cruical) {
Shape shape{1, 2, 3};
auto model_input_0 = make_shared<op::v0::Parameter>(element::f32, shape);
auto model_relu = make_shared<op::v0::Relu>(model_input_0);
auto model_input_1 =
make_shared<op::v0::Constant>(element::f32, shape, std::vector<float>(ov::shape_size(shape), .1f));
auto model_subtract = std::make_shared<op::v1::Subtract>(model_relu, model_input_1);
auto model_greater = std::make_shared<op::v1::Greater>(model_relu, model_input_1);
auto arithmetic_pattern = [](const ov::Output<ov::Node>& output) {
return ov::op::util::is_binary_elementwise_arithmetic(output.get_node_shared_ptr());
};
auto relu_pattern = [](const ov::Output<ov::Node>& output) {
return output.get_node_shared_ptr()->get_type_info().is_castable(ov::op::v0::Relu::get_type_info_static());
};
TestMatcher matcher;
auto pattern_input_0 = ov::pass::pattern::any_input(relu_pattern);
auto pattern_input_1 = ov::pass::pattern::wrap_type<ov::op::v0::Constant>();
// 1 type, correct in_order, without predicate
{
auto pattern = ov::pass::pattern::optional<op::v1::Subtract>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_subtract));
ASSERT_FALSE(matcher.match(pattern, model_greater));
auto pattern_negative = ov::pass::pattern::optional<op::v1::Greater>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern_negative, model_subtract));
}
// 2 type, correct in_order, without predicate
{
auto pattern =
ov::pass::pattern::optional<op::v1::Subtract, op::v1::Greater>({pattern_input_0, pattern_input_1});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_greater));
ASSERT_TRUE(matcher.match(pattern, model_subtract));
// negative
ASSERT_FALSE(matcher.match(pattern, std::make_shared<op::v1::Add>(model_relu, model_input_1)));
}
// 2 type, correct in_order, with predicate
{
auto pattern =
ov::pass::pattern::optional<op::v1::Subtract, op::v1::Greater>({pattern_input_0, pattern_input_1},
arithmetic_pattern);
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_TRUE(matcher.match(pattern, model_relu));
ASSERT_FALSE(matcher.match(pattern, model_input_1));
ASSERT_TRUE(matcher.match(pattern, model_subtract));
ASSERT_FALSE(matcher.match(pattern, model_greater));
}
// 2 type, reverse in_order, without predicate
{
auto pattern =
ov::pass::pattern::optional<op::v1::Subtract, op::v1::Greater>({pattern_input_1, pattern_input_0});
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_FALSE(matcher.match(pattern, model_relu));
ASSERT_TRUE(matcher.match(pattern, model_input_1));
ASSERT_FALSE(matcher.match(pattern, model_subtract));
ASSERT_FALSE(matcher.match(pattern, model_greater));
}
// 2 type, reverse in_order, with predicate
{
auto pattern =
ov::pass::pattern::optional<op::v1::Subtract, op::v1::Greater>({pattern_input_1, pattern_input_0},
arithmetic_pattern);
ASSERT_FALSE(matcher.match(pattern, model_input_0));
ASSERT_FALSE(matcher.match(pattern, model_relu));
ASSERT_TRUE(matcher.match(pattern, model_input_1));
ASSERT_FALSE(matcher.match(pattern, model_subtract));
ASSERT_FALSE(matcher.match(pattern, model_greater));
}
}
// complex pattern matching with `optional` and `wrap_type`
TEST(pattern, optional_complex_pattern_matching) {
auto model_param = make_shared<op::v0::Parameter>(element::f32, ov::Shape{2, 3, 4});
auto model_constant = make_shared<op::v0::Constant>(element::i32, ov::Shape{3}, std::vector<int>{2, 0, 1});
auto model_abs = make_shared<op::v0::Abs>(model_param);
auto model_transpose_negative = std::make_shared<op::v1::Transpose>(model_abs, model_constant);
auto model_negative = std::make_shared<op::v0::Relu>(model_transpose_negative);
auto model_relu = make_shared<op::v0::Relu>(model_param);
auto model_transpose_positive = std::make_shared<op::v1::Transpose>(model_relu, model_constant);
auto model_positive = std::make_shared<op::v0::Relu>(model_transpose_positive);
auto pattern_param = ov::pass::pattern::any_input();
auto pattern_constant = ov::pass::pattern::wrap_type<ov::op::v0::Constant>();
auto pattern_relu = ov::pass::pattern::wrap_type<ov::op::v0::Relu>({pattern_param});
auto pattern_transpose = ov::pass::pattern::optional<op::v1::Transpose>({pattern_relu, pattern_constant});
auto pattern = ov::pass::pattern::wrap_type<op::v0::Relu>({pattern_transpose});
TestMatcher matcher;
ASSERT_FALSE(matcher.match(pattern, model_negative));
ASSERT_TRUE(matcher.match(pattern, model_positive));
}
TEST(pattern, optional_full_match) {
Shape shape{};
auto model_input = std::make_shared<op::v0::Parameter>(element::i32, shape);
auto model_relu = std::make_shared<op::v0::Relu>(model_input);
auto model_relu1 = std::make_shared<op::v0::Relu>(model_relu->output(0));
auto pattern_relu = ov::pass::pattern::optional<op::v0::Relu>();
auto pattern_relu1 = std::make_shared<op::v0::Relu>(pattern_relu->output(0));
TestMatcher tm;
ASSERT_TRUE(tm.match(pattern_relu1, model_relu1));
}
TEST(pattern, optional_subgraph) {
Shape shape{};
auto model_input = std::make_shared<op::v0::Parameter>(element::i32, shape);
auto model_relu = std::make_shared<op::v0::Relu>(model_input);
auto model_abs = std::make_shared<op::v0::Abs>(model_relu->output(0));
auto model_exp = std::make_shared<op::v0::Exp>(model_abs->output(0));
auto pattern_input = ov::pass::pattern::optional<op::v0::Parameter>();
auto pattern_relu = ov::pass::pattern::optional<op::v0::Relu>(pattern_input);
auto pattern_abs = ov::pass::pattern::optional<op::v0::Abs>(pattern_relu);
auto pattern_exp = ov::pass::pattern::optional<op::v0::Exp>(pattern_abs);
TestMatcher tm;
ASSERT_TRUE(tm.match(pattern_exp, model_exp));
ASSERT_TRUE(tm.match(pattern_exp, model_abs));
ASSERT_TRUE(tm.match(pattern_exp, model_relu));
ASSERT_TRUE(tm.match(pattern_exp, model_input));
auto constant = make_shared<op::v0::Constant>(element::i32, ov::Shape{3}, std::vector<int>{2, 0, 1});
ASSERT_FALSE(tm.match(pattern_exp, constant));
}
// TODO: Issue: 139835
// The pattern matching does not support operations with optional inputs.
// For example, ov::op::v5::NonMaxSupression can be created without some optional input nodes (like
// `max_output_boxes_per_class`) (In case we would not specify input in constructor, the node input won't be created by
// default as a constant). Arguments matching will be failed due to different number of pattern and graph input args.
// Check `bool Matcher::match_arguments(Node* pattern_node, const std::shared_ptr<Node>& graph_node)`
TEST(pattern, DISABLED_optional_match_node_with_optional_input) {
auto model_in_0 = std::make_shared<ov::op::v0::Parameter>(element::f32, ov::Shape{3, 100, 4});
auto model_in_1 = std::make_shared<ov::op::v0::Parameter>(element::f32, ov::Shape{3, 5, 100});
auto model_in_2 = std::make_shared<ov::op::v0::Constant>(element::i32, ov::Shape{}, std::vector<int>{10});
auto model_nms_without_optional = std::make_shared<ov::op::v5::NonMaxSuppression>(model_in_0, model_in_1);
auto model_nms_with_optional = std::make_shared<ov::op::v5::NonMaxSuppression>(model_in_0, model_in_1, model_in_2);
TestMatcher matcher;
auto positive_predicate = [](const Output<Node>& output) {
return true;
};
auto negative_predicate = [](const Output<Node>& output) {
return false;
};
auto pattern_in_0 = ov::pass::pattern::any_input();
auto pattern_in_1 = ov::pass::pattern::any_input();
// checking matching optional input
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Constant>();
ASSERT_TRUE(matcher.match(pattern_in_2, model_in_2));
}
// checking matching optional input: negative
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Parameter>();
ASSERT_FALSE(matcher.match(pattern_in_2, model_in_2));
}
// validate matching: pattern is without optional input
{
auto pattern_nms = ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1});
ASSERT_FALSE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_without_optional));
}
// validate matching: pattern is with optional input
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Constant>();
auto pattern_nms =
ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1, pattern_in_2});
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_without_optional));
}
// validate matching: pattern is with optional input with positive predicate
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Constant>(positive_predicate);
auto pattern_nms =
ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1, pattern_in_2});
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_without_optional));
}
// validate matching: pattern is with optional input with negative predicate
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Constant>(negative_predicate);
auto pattern_nms =
ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1, pattern_in_2});
ASSERT_FALSE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_without_optional));
}
// validate matching: pattern is with optional input and optional relu as input 2
{
auto pattern_in_2 = ov::pass::pattern::optional<ov::op::v0::Constant>();
auto pattern_relu = ov::pass::pattern::optional<ov::op::v0::Relu>(pattern_in_2);
auto pattern_nms =
ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1, pattern_relu});
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_TRUE(matcher.match(pattern_nms, model_nms_without_optional));
}
// validate matching: pattern is with optional input
{
auto pattern_in_2 = ov::pass::pattern::wrap_type<ov::op::v0::Constant>();
auto pattern_relu_2 = ov::pass::pattern::optional<ov::op::v0::Relu>(pattern_in_2);
auto pattern_nms =
ov::pass::pattern::wrap_type<ov::op::v5::NonMaxSuppression>({pattern_in_0, pattern_in_1, pattern_relu_2});
ASSERT_FALSE(matcher.match(pattern_nms, model_nms_with_optional));
ASSERT_FALSE(matcher.match(pattern_nms, model_nms_without_optional));
}
}
TEST(pattern, mean) {
// construct mean
TestMatcher n;
auto input = std::make_shared<op::v0::Parameter>(element::f32, Shape{2, 3});
auto N = ov::op::v0::Constant::create(element::f32, Shape{3}, {2, 2, 2});
auto sum_input1 = std::make_shared<op::v1::ReduceSum>(input, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto mean = std::make_shared<op::v1::Divide>(sum_input1, N);
auto mean_graph = construct_mean_graph();
ASSERT_TRUE(n.match(mean_graph, mean));
ASSERT_EQ(n.get_pattern_map()[mean_graph], mean);
}
TEST(pattern, variance) {
// construct variance
TestMatcher n;
auto N = ov::op::v0::Constant::create(element::f32, Shape{3}, {2, 2, 2});
auto input = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 3});
auto input_sq = std::make_shared<op::v1::Multiply>(input, input);
auto sum_input = std::make_shared<op::v1::ReduceSum>(input, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto square_sumed_input = std::make_shared<op::v1::Multiply>(sum_input, sum_input);
auto sum_squared_input =
std::make_shared<op::v1::ReduceSum>(input_sq, ov::op::v0::Constant::create(element::i64, {1}, {0}));
auto avg_input_sum_sq = std::make_shared<op::v1::Divide>(square_sumed_input, N);
auto xmu = std::make_shared<op::v1::Subtract>(sum_squared_input, avg_input_sum_sq);
auto variance = std::make_shared<op::v1::Divide>(xmu, N);
auto var_graph = construct_variance_graph();
ASSERT_TRUE(n.match(var_graph, variance));
ASSERT_EQ(n.get_pattern_map()[var_graph], variance);
}
TEST(pattern, previous_matches) {
Shape shape{};
ov::pass::pattern::Matcher::PatternMap previous_matches;
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto pattern = std::make_shared<pattern::op::Label>(b);
auto abs = make_shared<op::v0::Abs>(a);
auto add = make_shared<op::v1::Add>(abs, b);
{
pattern::Matcher n(make_shared<op::v1::Add>(pattern, b));
ASSERT_TRUE(n.match(add, previous_matches));
ASSERT_EQ(n.get_pattern_map()[pattern], abs);
}
{
pattern::Matcher n(make_shared<op::v1::Add>(pattern, b));
previous_matches.insert(std::make_pair(pattern, a));
ASSERT_FALSE(n.match(add, previous_matches));
}
}
TEST(pattern, test_sort) {
Shape shape{};
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto b = make_shared<op::v0::Parameter>(element::i32, shape);
auto abs1 = make_shared<op::v0::Abs>(a);
auto abs2 = make_shared<op::v0::Abs>(b);
shared_ptr<Node> add = make_shared<op::v1::Add>(abs1, abs2);
auto pa = make_shared<op::v0::Parameter>(element::i32, shape);
auto pb = make_shared<op::v0::Parameter>(element::i32, shape);
auto pabs1 = make_shared<op::v0::Abs>(pa);
auto pabs1_label = std::make_shared<pattern::op::Label>(pabs1);
auto pabs2 = make_shared<op::v0::Abs>(b);
shared_ptr<Node> padd = make_shared<op::v1::Add>(pabs1_label, pabs2);
{
pattern::Matcher n1(padd);
ASSERT_TRUE(n1.match(add));
auto r1 = n1.get_pattern_map()[pabs1_label];
ASSERT_TRUE(n1.match(add));
ASSERT_EQ(r1, n1.get_pattern_map()[pabs1_label]);
}
}
TEST(pattern, is_contained_match) {
Shape shape{};
auto a = make_shared<op::v0::Parameter>(element::i32, shape);
auto absn = make_shared<op::v0::Abs>(a);
TestMatcher n;
auto label_a = std::make_shared<pattern::op::Label>(a);
auto label_abs = make_shared<op::v0::Abs>(a);
ASSERT_TRUE(n.match(label_abs, absn));
auto result_absn = make_shared<ov::op::v0::Result>(absn);
ASSERT_TRUE(n.is_contained_match());
auto absn2 = make_shared<op::v0::Abs>(absn);
auto result_absn2 = make_shared<ov::op::v0::Result>(absn2);
auto label_abs2 = make_shared<op::v0::Abs>(label_abs);
ASSERT_TRUE(n.match(label_abs2, absn2));
ASSERT_FALSE(n.is_contained_match());
}
TEST(pattern, wrap_type_single_op) {
auto a = make_shared<op::v0::Parameter>(element::f32, Shape{1, 3, 64, 64});
auto b = make_shared<op::v0::Abs>(a);
auto c = make_shared<ov::op::v0::Relu>(a);
auto mul1 = make_shared<op::v1::Multiply>(a, ov::op::v0::Constant::create(element::f32, Shape{}, {1}));
auto mul2 = make_shared<op::v1::Multiply>(ov::op::v0::Constant::create(element::f32, Shape{}, {1}), a);
{
auto m = pattern::wrap_type<op::v0::Abs>();